Reified Literals: A Best Practice Candidate Design
Pattern for Increased Expressivity in theIntelligence
Community

Eric Peterson,

Global Infotek, 1920 Association Drive
Reston, VA 20191, USA
epeterso@globalinfotek.com

Abstract. Reifying literals clearly increases expressivitBut reified literals
appear to waste memory, slow queries, and compligeaph-based models.
We show where this practice can be comparable teified literals in these
respects and we characterize the cost where dtis\We offer examples of how
reification allows literals to participate in a ety of relations enabling a
marked increase in expressivity. We begin withasecstudy in reified person
names, and then extend this analysis to reifiedsdahd simple reified scalar
values. We show benefits for name matching ancoeah analysis such as
would be of interest to the Intelligence Communit@)(We then show how
these same sorts of analyses can drive or infoyrdanision as to whether to
reify literals.

Keywords: reified literal, semantic, ontology, expressivitgest practice,
design pattern, Intelligence Community

1 Introduction

Reifying literals is not uncommon among popularotogies and relational data
models. But data architecture teams in the ICdraw from varied backgrounds and
the use of reified literals may not be desired.

The practice may not be desired because it appeavaste memory, slow queries,
and complicate graph-based models despite theaserm expressivity that it offers.
We lay out simple, general metrics for judging sumémory waste, slowness and
complication. We show where the practice can beparable in those respects to
unreified literals and we characterize the modest where it is not. We show how
reification allows literals to participate in a igty of relations which foster
expressivity. Beginning with a case study companieified with unreified person
names, we then extend the analysis to dates arplessualar values. We then show
how these same analyses can drive or inform anigidaaegarding whether to use or
not use literal reification. This paper works tod/aestablishing the reified literal
design pattern as a best practice component.

We define reified literals as instances that regmesgiteral values. A reification of
a name string literal value might be an instanceyjpé Name with a datatype property
containing the value of the name string. This namstance might then be attached to
a person instance by thezenName object property stateme(ee Figure 1).

[Person
e

[Person_lohnDoe_WithoutRelfiedName = e w{ J0HN |

i

(Person_JonnDee_ WithReifiedName Name_ JOHN

giveniame walle

Figure 1: In the top unreified examplgivenName is a datatype property statement. In the
bottom reified examplegivenName is an object property statement referencindName
instance.

2 Current Practice, Related Work, and Contributions

Literal reification is not an uncommon practice.€dfyc[1], lode[2], and SUMOJ3],
ontologies have pervasively reified literals. D[@] leaves literal definition to
extending ontologies.

W3C Semantic Web Best Practices and Deployment iWgr&roup presented a
draft by Hobbs and Pan[5] of a time ontology thaesionly reified time literals.
Project NeOn’s Ontology Design Pattern Repositdrgfihtains a pattern for reified
lexical items (terms). Many more main-stream exaspxist.

The closest work related to the reified literalssiga pattern is Presutti and
Gangemi’'s[7] content ontology design pattern regmuients - to which reified literals
complyt.

Reified literals are not new. But we choose torabterize the virtues and cost of
using this design pattern. We address some commisnonceptions about this
design pattern’s performance by detailing memomtddnt cost, speed, and design

1 The reified literal design pattern @®@mputational in that it is language independent and is
encoded in a higher order language (OWL). Itéadlysmall. It isautonomous (deployable
as a single file). It is hierarchical in that the clasd.iteral must be subclassed for each
particular literal. It isinference-enabling in that its reified instances become the foci of
relationships thasay something about the literal. Dates participate in Allenigterrval
calculus relations via transitive closure for exéanpThe pattern isognitively relevant in
that it is intuitive, compact, and captures relévastions in a domain. It iEnguistically
relevant in that we speak of names, dates, etc. as regjshi

complexity. We give examples of the pattern’s @ase in expressivity. We show
how to apply theses analyses to all literals.

3 Methodsand Metrics

We describe simple, simple metrics to comparea@ifiteral costs in memory and
guery speed with respect to those of unreifieddlte With the relative complexity of
reified literals and the benefits of their increhsxpressivity, however, we do not
attempt to go beyond a qualitative description.

For memory usage comparison the two approachesr diffucturally only by the
type of one statement (after shared structure isrgaad away). With the reified
approach the type of the statement in questioBhjgectProperty and with the un-
reified approach it is of typPatatypeProperty. If datatype property statements are
less compact in a particular implementation thajeattproperty statements, then the
reified literal approach is correspondingly moranpact for commonly referenced
literals. The opposite is true if datatype projgsrare more compact in memory.

Our query speed comparison shows one type of ddifieral queries that are faster
than or equal to non-reified queries. This is thuéhe fact that there is a faster than
or equal relationship betwedi) an equijoin andii) a join equating two unreified
literals. The other type of reified literal quasyslowed by the speed associated with
addition of a single equijoin. Further, we stdtet{i) an equijoin may be much faster
than(iii) a join inexactly matching two unreified literals

i {?personl givenName ?reified_nane .
?person2 givenNane ?reified _nane . }
ii: {?personl givenNane ?unreified nane .
?person2 gi venNanme ?unreified_nane . }
iii: {?personl givenName ?unreified_nanel .
?person2 gi venNanme ?unreified_nanme2 .
FILTER (likeTerm(?unreified nanel,
?unrei fied _nane2,
parti al Mat chSpec) }

Since the equijoin uses fast instance or integgmparison, it is faster or
comparable to the join of two unreified literals

2 The likeTerm function is a non-standard extension to SPARQL ferfggming partial
matching of strings. It is a more powerful versiminthe SQLLIKE keyword. The third
argument is a partial match specification strirgf $pecifies the type of partial match and an
optional matching template. In our implementatand others, inexact match is onerously
slow compared to the speed of an equijoin. Butuegge of a full text index, could make
inexact search significantly faster.

3 In RDF store implementations where strings areeshagsources, the reified and unreified
approaches are comparable because both are baskd oratching of integers rather than
strings.

The comparison of structural complexity we can hasgart on statement counts
and amortization of memory footprint comparisonut Bve ultimately rely on our
reader’s judgment as to the relative complexity.

The comparison of these sometimes negative coatasighe benefits of increased
expressivity is similarly subjective.

4 Case Study: Reified vs. Non-reified Names

First we treat the question of memory waste fdiaginames. Creating a new reified
name each time a data source mentions that namie wiearly waste memory. We,
however, create a particular reified name instgoseonce for all its references to
share. The cost of representing a non-reified n&@nene statement (<JohnDoe
givenName “John”>). The cost of a reified name ldoeount the following object
property statement (<JohnDoe givenName Name_JOHbNrs)the amortized cost of
the shared reified name components for the ndomm: <Name_JOHN rdfitype
Name> and <Name_JOHN value "John">. If just orfere:ce to a person with the
name "John" is in the data store, the extra rdificacost is two statements — three
times the non-reified approach. If the cost isretiabetween two referencethe
amortized extra cost is one statement; and amandte extra cost drops to one fifth
of a statement (sdégure 2).

JACK —_—
[_“_,] The name
value goes back to

John the
Mame_JACK

Baptist and
John the
Revelator -
author
of the Gospel
of John - in ...

Religion_Christain

Yot

hasCammoniMickname

Person_1 = 1 Person_11

Figure 2: Because reified names are shared, the memonottse name df:type statement
and namevalue statement is amortized out over all eleven narferageces. Note the several
examples of the expressive power of reified names.

If names are common, the cost for their sharecestants is negligible. So
uncommon orrare reified names are individually costlier than ufiesl names, but
the overall reified name cost is a function of #werage number of references to the
names.

Second, we treat the question of query speed. tEwane matching queries need
not be string based. With name reification, one atch name instances rather than
name strings. Implementations, then, can use éntegmparison for speed equal to
or faster than matching un-reified names.

When attempting an exact match query on a partiaqudae, on the other hand,
one must create the URI for that particular nanmgl ane must create it in some
repeatable canonical fashion. One must, for exanahleays translate the nandehn
to precisely the same URI (e.g.: http://foo.govitame JOHN). This same name
URI creation algorithm must be used for all nanmethe knowledge base. With these
precautions, particular name matching also canladsa matter of simply comparing
instances/integers rather than using an extratigogompare strings.

Inexact name matching requires an extra join whemgureified names because the
actual name string must be consulted. But thiscame in query time is never large
and is moot when using a system whose time foraceratching overwhelms the
cost of that extra join.

Next, we consider the structural complexity asgedavith reified names. The
path length from a person node to her actual naaheevis one statement longer with
the reified approach, but paying this price allavgsto say things about names (see
next section) in an organized fashion. We claiat tfi name meta-information is
required, it is more intuitive to link it to theified name instance and that the net
effect is a reduction in complexity.

We now consider the benefits of reified names. h&gs the most obvious benefit
is being able to conveniently and intuitively s#yngs about names and to reason
about that information. A reified name can be didldirectly to various information
of interest to the IC such as its New York Statentdication and Intelligence System
(NYSIS) encoding, its variants, its nicknames, gthnic derivation, a notion of its
level of formality, its gender association, etce¢Figure 2). Such information can
be encoded in a system using non-reified literblg, the querier would need to
understand the association between the name nfetasgtion and the respective
names. Clearly it is more intuitive to directlyli the information about a name to
some shared representation of the name. A newcomed not know where the
NYSIS information is stored. She simply queries the name and sees, by
inspection, that NYSIS information is associatethviis corresponding names.

5 Generalizing Name Reification Resultsfor Additional Literals

We discuss in detail the merits of reifying othiéerbl types. We begin with dates,
heights and weights.

As with reified names, reified dates are sharedrayvail the events that reference
them and, consequently, experience the same paltémtimemory cost amortization.
Exact date match query speed, as for all reifiedddls, is at least comparable to the

non-reified case. Simple time range queries boundhe reified date’xsd:date
value with twoxsd:date values require an additional join Structural ctewrjty of
reified dates is clearly comparable to that ofieeifnames. Expressivity-wise, dates
are, of course, actual time intervals rather thaapke time points. As an immediate
result of date reification, one can concretely hetp better support temporal
reasoning for IC applications. One can start tigching beginning and end date-
times to a date so as to allow dates to participatprecise time-interval-based
queries. Reified dates can be unknown and yet krtovibe before some other known
date. Such unknown date instances can participeadily in temporal interval
overlap relations such @aemporallyContains in order to bound the date if possible
(seeFigure 3).

With height and weight reification, amortized sharicost efficiency is somewhat
moot as likely usage tends toward few height anthhtevalued. Because even a
minute difference in an exact match query is a migsge queries are much more
useful with scalars. Query speed in this casegefbee, is reduced by the cost of an
equijoin, as actual weight and height values masatcessed. Reification increases
expressivity such as being able to encode thatpenson is taller than another and
both heights were unknown.

- 5 T .
(BirthEvent_UnknownMonthAndDate 2000-XX-XX | T | Year_2000 SRR #{ 2000
-C,G-'\La“s
wﬂgmaﬁ'ﬁ
(BirthEvent. UnknownDate 2000-09 " Month_2000-09 | T ot ier {09
whenBom 5’ e
monﬂf‘w

(BrinEvert UnknownYearAndDate RO0E5 K o™ Month_Y0XH-09_3fe354d-0905-4f19-Bhes-e121bad8257 |

I

LBmeanf_UnkmwnMonth_Zﬂm-)Oc—l IH Date 2000-%XX-11_3fe354d-0905-4f19-8bed-e121bad82576
whenBom 3"

Ly

((BirthEvent_UnknownYear XKXX-09-11 F=r——cm——{ Date _XXXX-09-11_3fs354d-0905-4719-8bed-2121bad82576
(,&B(&

(BirthEvent_UnknownYearAndMonth XXX0GX-11 =z Date X000CXX-11 3fe354d-0905-4719-be9-e121bad82576 |

Figure 3: The following diagram shows six birth events eadth a different sort of partial
date. Years, months, dates, and birth events alé temporal extent and can, therefore,
participate the various temporal interval algetetations. Unknown date and months have
URI names with embedded SHA 256 hash values to ptelrem from coalescing with similar
unknown dates and months. Were birthdays modeded datatype property rather than as
reified dates, this sort of query-time expressiwtyuld difficult and less intuitive.

These analyses apply to all twenty five of our tiyefive literals. Without going
into prohibited detail, all our literals are inhetly sharable and, therefore, offer the
same memory cost amortization potential. Zipf-Mahdbt power law results are
infrequently available for reifiable literals antlely offer no guarantees that their
exponents will be such that we can know that mengost will be negligible[8]. All

4 There are 289 English half inch values betweea aad twelve feet inclusive.

but four of our date types and four of our scalaherently lend themselves to using

exact match and partial match, as with reified ramée reified name analysis, then,

directly applies to these 17 literals. The twoenthcalar types behave just as height
and weight with the range queries that are slowepte equijoin. The other date

types areMonth, Year andTimePoint. They are all simply date-like time intervals of

various sizes, so their analyses are comparaliates

6 Results, Discussion, and Future Work

We established that common reified hames have cablgain-memory cost to non-
reified names. We similarly established that qugrged for exact matching of reified
names is equal or better than non reified namesl the additional speed cost of
inexact matching is negligible in systems wherexamt matching speed dominates
that of a join. We argue that the overall struetof reified names and their metadata
is simpler. We showed that reified names allow @ ebtightly linked expressivity
that un-reified names do not.

We similarly analyzed dates, heights, and weightsfaund them to be slower by
one join in interval queries. We found date exgirgty to be significant and height
and weight expressivity similar yet less likelytte justified by our data sets.

We distilled the following rules from the above bsés to help determine when
the literal reification design pattern should bedis

1. Rare reified literals are individually costly, bthe net cost is only a
concern if there are very many rare types.

2. Range queries such as with reified scalars andsdate slower by an
equijoin.

3. Inexact match queries over reified literals arevslioby an equijoin. That
equijoin is inconsequential on systems where inexatch dominates the
query time.

4. Otherwise the speed and memory cost is comparable.

As we value expressivity, we found most of ourréite to be reasonably strong
candidates for reification. Our desire for exprégsalso makes us less concerned as
to how well amortized our shared structure is. ¥end all of our scalars to be
weaker/marginal candidates because we have normnpresenear future need for
scalar-related expressivity. Their inclusion wobklbased more on a desire to apply
all design patters consistently.

In all cases, the value of the expressivity gairsiine subjectively weighed against
the possible cost in memory and speed. We have liteedl reification for over
fifteen years in the IC and in two different datéegration projectat scale.

We expect that as we continue to observe the sestitiur choices to reify and not
to reify literals, we will more finely characterizéow to make such choices in the
future. We expect to have opportunity to garnearsti structure amortization
statistics on our various reified literals.

5 TimePoint is encoded as an interval as per common convenflomePoint duration varies
with the number of significant digits in the input.

7 Conclusions

Commonly referenced reified literals come at litleno significant cost in memory,

S

peed, or complexity. Queries over such literedsreever slower than the cost of one

join with respect to unreified literals and are aljucomparable. Where literal-related

e

xpressivity is specifically needed or expecteiliect literals should be considered.

References

wn e

. Cycorp Inc.: OpenCyc. http://lopencyc.org

Hightfleet (formerly OntologyWorks): IODE, httfwww.highfleet.com

Pease, A., Niles, I., and Li, J.: The suggksiper merged ontology: A large ontology for
the semantic Web and its applications. In Procegdimf the AAAI-2002 Workshop on
Ontologies and the Semantic Web, Edmonton, Altana@a (2002)
. Masolo, C., Borgo, S., Gangemi, A., Guarino,®ltramari, A., and Schneider, L.: DOLCE:
A Descriptive Ontology for Linguistic and Cognitiiengineering. WonderWeb Project,
Deliverable D17 v2.1 (2003)

Hobbs, J., Pan, F.: Time Ontology in OWL. Wogkdraft, http://www.w3.org/TR/owl-
time (2006)

Charlet, J., Vandenbussche, P.: Concept Terms.ntoldagy Design Patterns.
http://ontologydesignpatterns.org/wiki/Submissi@mnceptTerms
. Gangemi, A.: Ontology Design Patters for Semateb Content. ISWC 2005. LNCS,
vol. 1729, pp. 262-276 (2005)
. Zipf, G., Selected Studies of the Principle ofaRee Frequency in Language. Harvard
University Press, Cambridge, MA (1932)

