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Abstract. Reifying literals clearly increases expressivity.  But reified literals 
appear to waste memory, slow queries, and complicate graph-based models.  
We show where this practice can be comparable to unreified literals in these 
respects and we characterize the cost where it is not.  We offer examples of how 
reification allows literals to participate in a variety of relations enabling a 
marked increase in expressivity.  We begin with a case study in reified person 
names, and then extend this analysis to reified dates and simple reified scalar 
values.  We show benefits for name matching and temporal analysis such as 
would be of interest to the Intelligence Community (IC).  We then show how 
these same sorts of analyses can drive or inform any decision as to whether to 
reify literals. 
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1   Introduction 

Reifying literals is not uncommon among popular ontologies and relational data 
models.  But data architecture teams in the IC can draw from varied backgrounds and 
the use of reified literals may not be desired. 

The practice may not be desired because it appears to waste memory, slow queries, 
and complicate graph-based models despite the increase in expressivity that it offers.  
We lay out simple, general metrics for judging such memory waste, slowness and 
complication. We show where the practice can be comparable in those respects to 
unreified literals and we characterize the modest cost where it is not.  We show how 
reification allows literals to participate in a variety of relations which foster 
expressivity.  Beginning with a case study comparing reified with unreified person 
names, we then extend the analysis to dates and simple scalar values.  We then show 
how these same analyses can drive or inform any decision regarding whether to use or 
not use literal reification.  This paper works toward establishing the reified literal 
design pattern as a best practice component. 



We define reified literals as instances that represent literal values.  A reification of 
a name string literal value might be an instance of type Name with a datatype property 
containing the value of the name string.  This name instance might then be attached to 
a person instance by the givenName object property statement (See Figure 1). 

 

 

Figure 1:  In the top unreified example, givenName is a datatype property statement.  In the 
bottom reified example, givenName is an object property statement referencing a Name 
instance. 

2   Current Practice, Related Work, and Contributions 

Literal reification is not an uncommon practice. OpenCyc[1], Iode[2], and SUMO[3], 
ontologies have pervasively reified literals.  DOLCE[4] leaves literal definition to 
extending ontologies. 

W3C Semantic Web Best Practices and Deployment Working Group presented a 
draft by Hobbs and Pan[5] of a time ontology that uses only reified time literals.  
Project NeOn’s Ontology Design Pattern Repository[6] contains a pattern for reified 
lexical items (terms).  Many more main-stream examples exist. 

The closest work related to the reified literals design pattern is Presutti and 
Gangemi’s[7] content ontology design pattern requirements - to which reified literals 
comply1.   

Reified literals are not new.  But we choose to characterize the virtues and cost of 
using this design pattern.  We address some common misconceptions about this 
design pattern’s performance by detailing memory footprint cost, speed, and design 

                                                           
1 The reified literal design pattern is computational in that it is language independent and is 

encoded in a higher order language (OWL).  It is clearly small.  It is autonomous (deployable 
as a single file).  It is hierarchical in that the class Literal must be subclassed for each 
particular literal.  It is inference-enabling in that its reified instances become the foci of 
relationships that say something about the literal.  Dates participate in Allen’s interval 
calculus relations via transitive closure for example.  The pattern is cognitively relevant in 
that it is intuitive, compact, and captures relevant notions in a domain.  It is linguistically 
relevant in that we speak of names, dates, etc. as real things. 



complexity.  We give examples of the pattern’s increase in expressivity.   We show 
how to apply theses analyses to all literals.   

 

3   Methods and Metrics 

We describe simple, simple metrics to compare reified literal costs in memory and 
query speed with respect to those of unreified literals.  With the relative complexity of 
reified literals and the benefits of their increased expressivity, however, we do not 
attempt to go beyond a qualitative description. 

For memory usage comparison the two approaches differ structurally only by the 
type of one statement (after shared structure is amortized away).  With the reified 
approach the type of the statement in question is ObjectProperty and with the un-
reified approach it is of type DatatypeProperty.  If datatype property statements are 
less compact in a particular implementation than object property statements, then the 
reified literal approach is correspondingly more compact for commonly referenced 
literals.  The opposite is true if datatype properties are more compact in memory. 

Our query speed comparison shows one type of reified literal queries that are faster 
than or equal to non-reified queries.  This is due to the fact that there is a faster than 
or equal relationship between (i) an equijoin and (ii) a join equating two unreified 
literals.  The other type of reified literal query is slowed by the speed associated with 
addition of a single equijoin.  Further, we state that (i) an equijoin may be much faster 
than (iii) a join inexactly matching two unreified literals2. 

 
i:   {?person1 givenName ?reified_name . 
      ?person2 givenName ?reified_name . } 
ii:  {?person1 givenName ?unreified_name . 
      ?person2 givenName ?unreified_name . } 
iii: {?person1 givenName ?unreified_name1 . 
      ?person2 givenName ?unreified_name2 . 
      FILTER (likeTerm(?unreified_name1,  
                        ?unreified_name2, 
                        partialMatchSpec) } 
 
   Since the equijoin uses fast instance or integer comparison, it is faster or 

comparable to the join of two unreified literals3.   

                                                           
2 The likeTerm function is a non-standard extension to SPARQL for performing partial 

matching of strings.  It is a more powerful version of the SQL LIKE keyword.  The third 
argument is a partial match specification string that specifies the type of partial match and an 
optional matching template.  In our implementation and others, inexact match is onerously 
slow compared to the speed of an equijoin.  But the usage of a full text index, could make 
inexact search significantly faster. 

3 In RDF store implementations where strings are shared resources, the reified and unreified 
approaches are comparable because both are based on the matching of integers rather than 
strings.  



The comparison of structural complexity we can base in part on statement counts 
and amortization of memory footprint comparison.  But we ultimately rely on our 
reader’s judgment as to the relative complexity.  

The comparison of these sometimes negative costs against the benefits of increased 
expressivity is similarly subjective. 

4   Case Study:  Reified vs. Non-reified Names 

First we treat the question of memory waste for reified names.  Creating a new reified 
name each time a data source mentions that name would clearly waste memory.  We, 
however, create a particular reified name instance just once for all its references to 
share.  The cost of representing a non-reified name is one statement (<JohnDoe 
givenName “John”>).  The cost of a reified name would count the following object 
property statement (<JohnDoe givenName Name_JOHN>) plus the amortized cost of 
the shared reified name components for the name John: <Name_JOHN rdf:type 
Name> and <Name_JOHN value "John">.  If just one reference to a person with the 
name "John" is in the data store, the extra reification cost is two statements – three 
times the non-reified approach.  If the cost is shared between two references, the 
amortized extra cost is one statement; and among ten, the extra cost drops to one fifth 
of a statement (see Figure 2). 

 
  

 

Figure 2:  Because reified names are shared, the memory cost of the name rdf:type statement 
and name value statement is amortized out over all eleven name references.  Note the several 
examples of the expressive power of reified names. 

 



If names are common, the cost for their shared statements is negligible.  So 
uncommon or rare reified names are individually costlier than unreified names, but 
the overall reified name cost is a function of the average number of references to the 
names. 

Second, we treat the question of query speed.  Exact name matching queries need 
not be string based.  With name reification, one can match name instances rather than 
name strings.  Implementations, then, can use integer comparison for speed equal to 
or faster than matching un-reified names.    

When attempting an exact match query on a particular name, on the other hand, 
one must create the URI for that particular name, and one must create it in some 
repeatable canonical fashion. One must, for example, always translate the name John 
to precisely the same URI (e.g.: http://foo.gov/bar#Name_JOHN).  This same name 
URI creation algorithm must be used for all names in the knowledge base.  With these 
precautions, particular name matching also can also be a matter of simply comparing 
instances/integers rather than using an extra join to compare strings. 

Inexact name matching requires an extra join when using reified names because the 
actual name string must be consulted.  But this increase in query time is never large 
and is moot when using a system whose time for inexact matching overwhelms the 
cost of that extra join. 

Next, we consider the structural complexity associated with reified names.  The 
path length from a person node to her actual name value is one statement longer with 
the reified approach, but paying this price allows us to say things about names (see 
next section) in an organized fashion.  We claim that if name meta-information is 
required, it is more intuitive to link it to the reified name instance and that the net 
effect is a reduction in complexity. 

We now consider the benefits of reified names.  Perhaps the most obvious benefit 
is being able to conveniently and intuitively say things about names and to reason 
about that information.  A reified name can be linked directly to various information 
of interest to the IC such as its New York State Identification and Intelligence System 
(NYSIS) encoding, its variants, its nicknames, its ethnic derivation, a notion of its 
level of formality, its gender association, etc. (See Figure 2).  Such information can 
be encoded in a system using non-reified literals, but the querier would need to 
understand the association between the name meta-information and the respective 
names.  Clearly it is more intuitive to directly link the information about a name to 
some shared representation of the name.  A newcomer need not know where the 
NYSIS information is stored.  She simply queries on the name and sees, by 
inspection, that NYSIS information is associated with its corresponding names. 

5 Generalizing Name Reification Results for Additional Literals 

We discuss in detail the merits of reifying other literal types.  We begin with dates, 
heights and weights. 

As with reified names, reified dates are shared among all the events that reference 
them and, consequently, experience the same potential for memory cost amortization.  
Exact date match query speed, as for all reified literals, is at least comparable to the 



non-reified case.  Simple time range queries bounding the reified date’s xsd:date 
value with two xsd:date values require an additional join  Structural complexity of 
reified dates is clearly comparable to that of reified names.  Expressivity-wise, dates 
are, of course, actual time intervals rather than simple time points. As an immediate 
result of date reification, one can concretely begin to better support temporal 
reasoning for  IC applications.  One can start by attaching beginning and end date-
times to a date so as to allow dates to participate in precise time-interval-based 
queries.  Reified dates can be unknown and yet known to be before some other known 
date.  Such unknown date instances can participate readily in temporal interval 
overlap relations such as temporallyContains in order to bound the date if possible 
(see Figure 3).   

With height and weight reification, amortized sharing cost efficiency is somewhat 
moot as likely usage tends toward few height and weight values4.  Because even a 
minute difference in an exact match query is a miss, range queries are much more 
useful with scalars.  Query speed in this case, therefore, is reduced by the cost of an 
equijoin, as actual weight and height values must be accessed.  Reification increases 
expressivity such as being able to encode that one person is taller than another and 
both heights were unknown. 

 

 

Figure 3:  The following diagram shows six birth events each with a different sort of partial 
date.  Years, months, dates, and birth events all have temporal extent and can, therefore, 
participate the various temporal interval algebra relations.  Unknown date and months have 
URI names with embedded SHA 256 hash values to prevent them from coalescing with similar 
unknown dates and months.  Were birthdays modeled as a datatype property rather than as 
reified dates, this sort of query-time expressivity would difficult and less intuitive.  

These analyses apply to all twenty five of our twenty five literals.  Without going 
into prohibited detail, all our literals are inherently sharable and, therefore, offer the 
same memory cost amortization potential. Zipf-Mandlebrot power law results are 
infrequently available for reifiable literals and they offer no guarantees that their 
exponents will be such that we can know that memory cost will be negligible[8].  All 

                                                           
4 There are 289 English half inch values between zero and twelve feet inclusive. 



but four of our date types and four of our scalars inherently lend themselves to using 
exact match and partial match, as with reified names. The reified name analysis, then, 
directly applies to these 17 literals.  The two other scalar types behave just as height 
and weight with the range queries that are slower by one equijoin.  The other date 
types are Month, Year and TimePoint.  They are all simply date-like time intervals of 
various sizes, so their analyses are comparable to Date5 

6 Results, Discussion, and Future Work 

We established that common reified names have comparable in-memory cost to non-
reified names.  We similarly established that query speed for exact matching of reified 
names is equal or better than non reified names. And the additional speed cost of 
inexact matching is negligible in systems where inexact matching speed dominates 
that of a join.  We argue that the overall structure of reified names and their metadata 
is simpler. We showed that reified names allow a sort of tightly linked expressivity 
that un-reified names do not.  

We similarly analyzed dates, heights, and weights and found them to be slower by 
one join in interval queries.  We found date expressivity to be significant and height 
and weight expressivity similar yet less likely to be justified by our data sets. 

We distilled the following rules from the above analysis to help determine when 
the literal reification design pattern should be used:  

1. Rare reified literals are individually costly, but the net cost is only a 
concern if there are very many rare types. 

2. Range queries such as with reified scalars and dates are slower by an 
equijoin. 

3. Inexact match queries over reified literals are slower by an equijoin.  That 
equijoin is inconsequential on systems where inexact match dominates the 
query time. 

4. Otherwise the speed and memory cost is comparable.  
As we value expressivity, we found most of our literals to be reasonably strong 

candidates for reification.  Our desire for expressivity also makes us less concerned as 
to how well amortized our shared structure is.  We found all of our scalars to be 
weaker/marginal candidates because we have no present or near future need for 
scalar-related expressivity.  Their inclusion would be based more on a desire to apply 
all design patters consistently. 

In all cases, the value of the expressivity gain must be subjectively weighed against 
the possible cost in memory and speed. We have used literal reification for over 
fifteen years in the IC and in two different data integration projects at scale.   

We expect that as we continue to observe the results of our choices to reify and not 
to reify literals, we will more finely characterize how to make such choices in the 
future.  We expect to have opportunity to garner shared structure amortization 
statistics on our various reified literals. 

                                                           
5 TimePoint is encoded as an interval as per common convention.  TimePoint duration varies 

with the number of significant digits in the input. 



7 Conclusions 

Commonly referenced reified literals come at little or no significant cost in memory, 
speed, or complexity.  Queries over such literals are never slower than the cost of one 
join with respect to unreified literals and are usually comparable. Where literal-related 
expressivity is specifically needed or expected, reified literals should be considered. 
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