Using New Standards to Develop IC Ontologies

STIDS 2010

Richard Lee

lee_richard@bah.com
Overview

- Previous Work: METS
- Recent Work: SCSP
- Universal Core
- OWL 2
- Future Work
Metadata Extraction and Tagging Service (METS)

- A DoDIIS service for processing documents:
 - Normalization
 - Metadata detection
 - Entity extraction
 - Geotagging

- Produces XML:
 - IC PUBS
 - OWL/RDF
Ontology Work on METS

- Industry (OWL and KIF) Standards and near-Standards:
 - SUMO / MILO / etc (converted from KIF)
 - W3C’s GML (supplemented) and Time

- Government (XML) Standards:
 - TWPDES (for person data)
 - ISM (for security markings)
 - DDMS (for other metadata)
New Project: SCSP

- Analysts needed to work with:
 - multiple data sources
 - multiple process models
 - multiple analysis models

- Analysts needed to perform:
 - search
 - discovery
 - correlation
 - presentation
New Ontology Work

- Building ontologies by converting models
 - Palantir
 - MIDB (partial), TIDE, Artemis, et al
 - CIA World Fact Book, ProMED, et al
 - PMESII, CTAF
 - various process models (maybe)

- Building a “master” ontology
 - Defines all the concepts of interest to the analysts
 - Defines the relationship between the concepts in all the others
Universal Core (UCore)

- A government-sponsored XML standard for information sharing

- Universal Core 2.0 included an OWL ontology
 - Class taxonomy only – no properties
 - Very minimal

- Universal Core Semantic Layer (UCore SL)
 - Started from the taxonomy and other elements in UCore
 - Used ideas from BFO to enhance them into a full upper-level ontology
Building on UCore SL

- SCSP master ontology was built on UCore SL
- Linked its concepts to those in all the others (plus METS)
 - Using subClassOf, equivalentClass, (ditto for Property), etc
- SUMO leveraged for many concepts
 - A few new classes wedged into the upper levels
 - Lots of new classes underneath
Example of Borrowing from SUMO: the Problem

- Equipment vs Sensor vs Vehicle vs Weapon vs etc
 - Artemis: Communication (Device), Equipment are distinct
 - MEPED: Equipment types include Communication Device, Sensor, Vehicle and Weapon, but only covers Military Equipment
 - Palantir: Equipment has children Communication Device, Sensor, et al, but Vehicle and Weapon are siblings of Equipment
 - UCore SL: Sensor, Equipment disjoint; Vehicle, Equipment unspecified; Weapon "in principle" would be a child of Equipment
 - (bio) DB: Equipment even includes the Kitchen Sink, and Lab Animals
Example of Borrowing from SUMO: the Solution

```xml
<owl:Class rdf:ID="Device">
  <rdfs:subClassOf rdf:resource="#Artifact"/>
  <owl:disjointWith rdf:resource="#Facility"/>
  <rdfs:subClassOf rdf:resource="#sumo;Device"/>
</owl:Class>

<owl:Class rdf:ID="Equipment">
  <rdfs:subClassOf rdf:resource="#Device"/>
  <owl:disjointWith rdf:resource="#ExplosiveDevice"/>
  <owl:disjointWith rdf:resource="#Sensor"/>
  <owl:disjointWith rdf:resource="#Vehicle"/>
  <owl:disjointWith rdf:resource="#Weapon"/>
  <rdfs:subClassOf rdf:resource="#art;Equipment"/>
</owl:Class>

<owl:Class rdf:ID="MeasuringDevice">
  <rdfs:subClassOf rdf:resource="#Device"/>
  <owl:disjointWith rdf:resource="#Communi.Device"/>
  <owl:disjointWith rdf:resource="#ExplosiveDevice"/>
  <owl:disjointWith rdf:resource="#Vehicle"/>
  <owl:disjointWith rdf:resource="#Weapon"/>
  <rdfs:subClassOf rdf:resource="#sumo;M.Device"/>
</owl:Class>

<owl:Class rdf:ID="Sensor">
  <rdfs:subClassOf rdf:resource="#M.Device"/>
  <owl:disjointWith rdf:resource="#Equipment"/>
  <owl:equivalentClass rdf:resource="#ucsl;Sensor"/>
  <owl:equivalentClass rdf:resource="#pal;Sensor"/>
</owl:Class>

<owl:Class rdf:ID="Bomb">
  <rdfs:subClassOf rdf:resource="#Weapon"/>
  <rdfs:subClassOf rdf:resource="#ExplosiveDevice"/>
  <owl:equivalentClass rdf:resource="#sumo;Bomb"/>
  <owl:equivalentClass rdf:resource="#pal;Bomb"/>
</owl:Class>

<owl:Class rdf:about="#ucsl;Equipment">
  <rdfs:subClassOf rdf:resource="#Device"/>
</owl:Class>

<owl:Class rdf:about="#meped;Equipment">
  <rdfs:subClassOf rdf:resource="#Device"/>
</owl:Class>
```
OWL 2 New Features

- Enhanced Annotation Property Usage
- New construct: AllDisjointClasses
- New construct: PropertyChainAxiom
AllDisjointClasses

- Problem: Listing, for each class, all its DisjointWith declarations is bulky and error-prone
- Solution: AllDisjointClasses
OWL 2 AllDisjointClasses enables simplification

```xml
<owl:Class rdf:ID="Device">
  <rdfs:subClassOf rdf:resource="#Artifact"/>
  <rdfs:subClassOf rdf:resource="#sumo;Device"/>
</owl:Class>

<owl:AllDisjointClasses>
  <owl:members rdf:parseType="Collection">
    <owl:Class rdf:about="#Equipment"/>
    <owl:Class rdf:about="#ExplosiveDevice"/>
    <owl:Class rdf:about="#Sensor"/>
    <owl:Class rdf:about="#Vehicle"/>
  </owl:members>
</owl:AllDisjointClasses>

<owl:Class rdf:ID="Equipment">
  <rdfs:subClassOf rdf:resource="#Device"/>
  <owl:disjointWith rdf:resource="#Weapon"/>
  <rdfs:subClassOf rdf:resource="#art;Equipment"/>
</owl:Class>

<owl:Class rdf:ID="Sensor">
  <rdfs:subClassOf rdf:resource="#M.Device"/>
  <owl:equivalentClass rdf:resource="#ucsl;Sensor"/>
  <owl:equivalentClass rdf:resource="#pal;Sensor"/>
</owl:Class>
```
PropertyChainAxiom

- Problem: Models differ in what they define as first-class objects, and what is simply represented by name/code strings
 - Model A says *Location* is a first-class object, linked to by other objects
 - Model B says *Location* is represented in other objects by its name or country code string
 - How to relate the two?
- Solution: PropertyChainAxiom
OWL 2 PropertyChains for cross-ontology links

- a’s `countryOfBirth` is an ObjectProperty linking `Person` to `Country`
- b’s `birthCountry` is a DatatypeProperty of `Person` simply naming a country

```
<rdf:Description rdf:about="&b;birthCountry">
  <owl:propertyChainAxiom rdf:parseType="Collection">
    <owl:ObjectProperty rdf:about="&a;countryOfBirth"/>
    <owl:DatatypeProperty rdf:about="&a;name"/>
  </owl:propertyChainAxiom>
</rdf:Description>
```

(It was not clear from the OWL 2 specification whether using `PropertyChainAxiom` to relate DatatypeProperties was allowed, but it’s been confirmed)
AnnotationProperty

- **Problem:**
 - Capturing security, provenance, confidence, etc is critical
 - Agreeing on how to represent that is needed for secure handling and effective data sharing
 - ICS500-21 requires all XML representations to use the ISM XML schema for security markings
 - This is not workable for many pre-defined XML schemas such as RDF/XML
 - We need to propose a representation which can be ratified as a standard in lieu of ISM XML

- **Solution:** PropertyChainAxiom
OWL 2 Annotations for Security (ISMv3.owl)

<owl:Class rdf:ID="CVE_Classif">
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="#U">
<rdfs:comment>UNCLASSIFIED</rdfs:comment>
<ism:security rdf:resource="#U-USA"/>
</owl:Thing>
...
</owl:oneOf>
</owl:Class>

<ism:Security rdf:ID="U-USA">
<ism:classification rdf:resource="#U"/>
<ism:ownerProducer rdf:resource="#USA"/>
</ism:Security>

<owl:Class rdf:ID="Security">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>
<owl:onProperty rdf:resource="#ownerProducer"/>
<owl:minCardinality>1</owl:minCardinality>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#classification"/>
<owl:allValuesFrom rdf:resource="#CVE_Classif"/>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#ownerProducer"/>
<owl:allValuesFrom rdf:resource="#CVE_OP"/>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#relTo"/>
<owl:allValuesFrom rdf:resource="#CVE_Rel"/>
</owl:Restriction>
...
</owl:Class>

Booz | Allen | Hamilton
OWL 2 Annotations for Security (Usage)

<owl:Axiom>
 <owl:annotatedSource rdf:resource="#ID1"/>
 <owl:annotatedProperty rdf:resource="&example;memberOf"/>
 <owl:annotatedTarget rdf:resource="#ID2"/>
 <ism:security rdf:resource="#Sec1"/>
</owl:Axiom>

<ism:Security rdf:ID="Sec1">
 <ism:classification rdf:resource="#S"/>
 <ism:ownerProducer rdf:resource="#USA"/>
 <ism:disseminationControls rdf:resource="#REL"/>
 <ism:relTo rdf:resource="#USA"/>
 <ism:relTo rdf:resource="#CAN"/>
 <ism:relTo rdf:resource="#GBR"/>
 <ism:relTo rdf:resource="#ISAF"/>
</ism:Security>

- Asserts the triple
- Annotates the triple with its security
AnnotationProperty

- **Problem:**
 - Palantir ontology had class hierarchies cut off at a fairly high level; used various *type* properties below that
 - Palantir’s lack of multiple inheritance also led to use of *type* properties
 - Palantir provides “Composite Properties” where OWL needs to use simple classes
 - We needed to have a reasonably formal specification of the mapping from that ontology to the OWL one

- **Solution:** AnnotationProperty
OWL 2 Annotations for Mapping (Usage)

```xml
<owl:Class rdf:ID="Acoustics%20Sensor">
  <rdfs:label>acoustics sensor</rdfs:label>
  <translationClass>Equipment</translationClass>
  <translationProperty>
    <Property>
      <pname>Equipment Type</pname>
      <pvalue>Sensor</pvalue>
    </Property>
  </translationProperty>
  <translationProperty>
    <Property>
      <pname>Sensor Type</pname>
      <pvalue>Acoustics Sensor</pvalue>
    </Property>
  </translationProperty>
  <rdfs:subClassOf rdf:resource="#Sensor"/>
</owl:Class>
```
Future Work

- Add mappings in METS ontology to the concepts in UCore SL
- Continue data source and process modeling in SCSP
- Continue retrofitting OWL 2 constructs into the ontologies of both
- Work with the community on standardizing ontologies such as ISM
Contact Info

Richard Lee

lee_richard@bah.com
571-482-7809

cnleera@dodiis.ic.gov

METS info

http://purl.org/mets
http://mets.dodiis.ic.gov