Introducing Ontological Realism for Unsupervised Detection and Annotation of Operationally Significant Activity in Surveillance Videos

October 27-28, 2010
George Mason University, Fairfax, Virginia

W. Ceusters¹, J. Corso², Y. Fu², M. Petropoulos², V. Krovi³

¹ Ontology Research Group, NYS Center of Excellence in Bioinformatics & Life Sciences, 701 Ellicott Street, Buffalo NY
² School of Computer Science and Engineering, University at Buffalo
³ Department of Mechanical and Aerospace Engineering, University at Buffalo
The ISTARE Team

Jason Corso
Computer Science and Engineering
Computer Vision
Statistical Learning
Ontological Reasoning

Raymond Fu
Computer Science and Engineering
Computer Vision
Manifold Learning

Werner Ceusters
Psychiatry
Ontology Research Group
Ontology
Referent Tracking

Michalis Petropoulos
Computer Science and Engineering
Databases Storage
Query Languages

Venkat Krovi
Mechanical and Aerospace Engineering
Robotics
Biomechanics
Articulated Motion

ISTARE
Intelligent Spatiotemporal Activity Reasoning Engine
DARPA’s Mind’s Eye Program (1)

- **Purpose**: develop software for a smart camera, which is mountable on, f.i., man-portable UGVs and which exhibits capabilities necessary to perform surveillance in operational missions.

- **Capabilities requested**:
 - recognize the primitive actions that take place between objects in the visual input, with a particular emphasis on actions that are relevant in typical operational scenarios (e.g., vehicle APPROACHES checkpoint; person EXITS building).
DARPA’s Mind’s Eye Program (2)

Capabilities requested (continued):

- learning and cross-scene application of invariant spatio-temporal patterns,
- issuing alerts to activities of interest,
- performing interpolation to fill in likely explanations for gaps in the perceptual experience,
- explaining its reasoning by displaying relevant video segments for what has been observed, and by generating visualizations for what is hypothesized.
Actions of interest

<table>
<thead>
<tr>
<th>approach</th>
<th>carry</th>
<th>dig</th>
<th>fall</th>
<th>give</th>
<th>hit</th>
<th>lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrive</td>
<td>catch</td>
<td>drop</td>
<td>flee</td>
<td>go</td>
<td>hold</td>
<td>move</td>
</tr>
<tr>
<td>attach</td>
<td>chase</td>
<td>enter</td>
<td>fly</td>
<td>hand</td>
<td>kick</td>
<td>open</td>
</tr>
<tr>
<td>bounce</td>
<td>close</td>
<td>exchange</td>
<td>follow</td>
<td>haul</td>
<td>jump</td>
<td>pass</td>
</tr>
<tr>
<td>bury</td>
<td>collide</td>
<td>exit</td>
<td>get</td>
<td>have</td>
<td>leave</td>
<td>pick up</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>push</th>
<th>run</th>
<th>touch</th>
<th>pass</th>
<th>receive</th>
<th>take</th>
</tr>
</thead>
<tbody>
<tr>
<td>put down</td>
<td>snatch</td>
<td>turn</td>
<td>pick up</td>
<td>replace</td>
<td>throw</td>
</tr>
<tr>
<td>raise</td>
<td>stop</td>
<td>walk</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Run - Take
Drop - Lift
Filling gaps
System overview

New York State Center of Excellence in Bioinformatics & Life Sciences

Integrate SOA computer vision

Visual Processing
- Low Level Processing
- Object and Part Detection
- Object and Part Tracking

Camera

Stored Video Examples

Operationally realistic scenes

Research focus on enabling technologies

Visual Intelligence
- Visual Event Learning
- Spatiotemporal Activity Models
- Visual Inspection & Envisionment
- Grounding
- Activity Ontology
- Symbolic Reasoning
- Declarative Knowledge

Visual Interaction
- Dialog Processing
- Referent Tracking

Human-In-The-Loop

Mixed-Factor Graphical Models

Articulated Activities

Anomaly Detection

Visual Inspection & Envisionment

Parts-Pursuit

Analysis-By-Synthesis

Visual Intelligence

ISTARE
Intelligent Spatio-Temporal Activity Reasoning Engine

Query
Representation strategy

- Hierarchical and generative representation.
- Allows for reuse of parts at the low- and mid-levels.
- Each object is a rooted graph with a mixture of directed and undirected edges, which govern the nature of the connections.
- At the low-level, atoms subtend spatiotemporal lines, planes, and regions over which we learn non-linear manifolds.
Representation of activities

- Activities are detected as changes in conglomerates of these object graphs, which have connections at both the mid- (part) and the high-level (object).
Learning with human in the loop

- For learning the structure at the mid-to-high levels.
 - Proceed with an active semi-supervised learning schema to iteratively refine a distance metric.
 - At mid-level: clustering is the game.
 - Iteratively seek grouping constraints.
 - Interactively link clusters to **ontology**.
 - Working with both spectral and hierarchical clustering.
 - At high-level: get feedback from the user based on our **ontological** grounding: ask Questions, such as “is the person in this clip giving the object to the other person?”
ISTARE Ontology

• Roles:
 – **Learning**: it will help guide a learning algorithm to remain in plausible configurations.
 – **Inference**: it will support reasoning of plausible explanations of objects and activities in existing and missing parts of the signal.

• Components:
 – L1 \leftrightarrow L1:
 – How humans interact with objects and other humans in various scenarios.
 – How motions of object-parts contribute to full object motion.
 – L1 \leftrightarrow L3:
 – How manifolds in the video correspond to entities videotaped.
 – L1 \leftrightarrow L2 \leftrightarrow L3:
 – How analysts interpret videos and corresponding reality.
L1 – L3
The basis: Ontological Realism

Basic axioms of realism:
1. There is an external reality which is ‘objectively’ the way it is;
2. That reality is accessible to us;
3. We build in our brains cognitive representations of reality;
4. We communicate with others about what is there, and what we believe there is there.

Three levels of reality, two sorts of representations

L1

R

L2

beliefs

L3

symbolizations

‘about’
Main distinctions in BFO

- Some continuant universal
- Some occurred universal
- Some continuant particular
- Some occurred particular
Sorts of relations

Unconstrained reasoning

\(\text{UtoU}: \text{isa, partOf, …}\)

\(\text{PtoU}: \text{instanceOf, lacks, denotes…}\)

\(\text{PtoP}: \text{partOf, denotes, subclassOf,…}\)

OWL-DL reasoning
Region Connection Calculus (RCC8)

8 possible relations between regions at a time

- DC
- EC
- PO
- TPP
- NTPP
- TPPI
- NTPPI

RCC8 reasoning

- $\text{rel}_1(x,y,t) \land \text{rel}_2(y,z,t) \Rightarrow \text{rel}_3(x,z,t) ?$
- e.g. $\text{DC}(x,y,t) \land \text{DC}(y,z,t)$
- maintained in tables

RCC8: conceptual neighborhood

If rel_1 at t_1, what possible relations at t_2?

- DC
- EC
- PO
- TPP
- NTPP
- TPPI
- NTPPI

Basic ‘Motion Classes’

<table>
<thead>
<tr>
<th></th>
<th>DC</th>
<th>EC</th>
<th>PO</th>
<th>TPP</th>
<th>NTPP</th>
<th>EQ</th>
<th>TPPI</th>
<th>NTPPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>Split</td>
<td>Peripheral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO</td>
<td>Leave or Reach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTPPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ends</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>External</td>
<td>Hit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO</td>
<td>Leaf or Reach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTPPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reasoning with motion classes

- \(mc_1(x,y,t) \land mc_2(y,z,t) \implies mc_3(x,z,t) \)?
- e.g. \(\text{leave}(x,y,t) \land \text{leave}(y,z,t) \)

Reasoning with motion classes

- $mc_1(x, y, t) \land mc_2(y, z, t) \rightarrow mc_3(x, z, t)$
- e.g. $leave(x, y, t) \land leave(y, z, t)$

Reasoning with motion classes

- $mc_1(x,y,t) \land mc_2(y,z,t) \rightarrow mc_3(x,z,t)$?
- e.g. leave(x,y,t) \land leave(y,z,t)

- all possibilities also in tables

RCC8/MC14 and Ontological Realism

In ontological realism:
- regions don’t move
- material entities are located in regions
- while material entities move or shrink/expand:
 - they are located at each t in a different region
 - each such region is part of the region formed by all the regions visited, thus constituting a path
 - ...

An unambiguous mapping is possible
RCC8/MC14 and action verbs

‘approach’
RCC8/MC14 and action verbs

‘approach’

- Invariant:
 - shrink of the region between the entities involved in an approach
RCC8/MC14 and action verbs

<table>
<thead>
<tr>
<th>approach</th>
<th>carry</th>
<th>dig</th>
<th>fall</th>
<th>give</th>
<th>hit</th>
<th>lift</th>
<th>push</th>
<th>run</th>
<th>touch</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrive</td>
<td>catch</td>
<td>drop</td>
<td>flee</td>
<td>go</td>
<td>hold</td>
<td>move</td>
<td>put down</td>
<td>snatch</td>
<td>turn</td>
</tr>
<tr>
<td>attach</td>
<td>chase</td>
<td>enter</td>
<td>fly</td>
<td>hand</td>
<td>kick</td>
<td>open</td>
<td>raise</td>
<td>stop</td>
<td>walk</td>
</tr>
<tr>
<td>bounce</td>
<td>close</td>
<td>exchange</td>
<td>follow</td>
<td>haul</td>
<td>jump</td>
<td>pass</td>
<td>receive</td>
<td>take</td>
<td></td>
</tr>
<tr>
<td>bury</td>
<td>collide</td>
<td>exit</td>
<td>get</td>
<td>have</td>
<td>leave</td>
<td>pick up</td>
<td>replace</td>
<td>throw</td>
<td></td>
</tr>
</tbody>
</table>

- all can be expressed in terms of mc14 (with the addition of direction and some other features)
- from mc to the verbs: requires additional information on the nature of the entities involved – to be encoded in the ontology
Action verbs and Ontological Realism

• Many caveats:
 – the way matters are \textit{expressed} in natural language does not correspond faithfully with the way matters \textit{are}

‘approach’

x orbiting around y

x taking distance from y?

→ x’s process didn’t change

→ ‘to approach’ is a verb, but it does not represent a process, rather implies a process.
Action verbs and Ontological Realism

• Approaching following a forced path
RCC8/MC14 & video as 2D+T representation of 3D+T

man entering building: the first-order view
RCC8/MC14 & video as 2D+T representation of 3D+T

man entering building: the video view
RCC8/MC14 & video as 2D+T representation of 3D+T

egg crashing on wall: the video view

• Requires additional mapping from the motion of manifolds in the video to the corresponding motion of the corresponding entities in reality
ISTARE Ontology design principles

- **Main objective:**
 - Being pragmatic, yet adhering to the principles of Ontological Realism.

- **Each representational unit (RU) denotes either**
 - a *universal*:
 - Human Being, Motion;
 - a *fiat class*, i.e, a portion of reality demarcated by human fiat, and relevant for the goals of ISTARE:
 - Canonically-limbed human being,
 - High five.
A partly worked out example
Human anatomy (L1)

- c1 member-of Canonically-Limbed Human Being at t, then:
 - c1 has-part c2 at t
 - c2 instance-of Left Arm at t
 - c1 has-part c3 at t
 - c3 instance-of Right Arm at t
 - c1 has-part c4 at t
 - c4 instance-of Left Lower Limb at t
 - c1 has-part c5 at t
 - c5 instance-of Right Lower Limb at t
 - c1 has-part c6 at t
 - c6 instance-of Head at t
 - c1 has-part c7 at t
 - c7 instance-of Torso at t
 - c2 adjacent-to c7 at t
 - c3 adjacent-to c7 at t
 - c4 adjacent-to c7 at t
 - c5 adjacent-to c7 at t
 - c6 adjacent-to c7 at t
 - …
Human physiology (L1)

- c_1 member-of Canonically-Limbed Human Being at t, then:
 - sdc_1 inheres-in c_1 at t
 - sdc_1 instance-of Disposition-to-Walk at t
 - sdc_2 inheres-in c_1 at t
 - sdc_2 instance-of Disposition-to-Run at t
 - ...

<table>
<thead>
<tr>
<th>approach</th>
<th>carry</th>
<th>dig</th>
<th>fall</th>
<th>give</th>
<th>hit</th>
<th>lift</th>
<th>push</th>
<th>run</th>
<th>touch</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrive</td>
<td>catch</td>
<td>drop</td>
<td>flee</td>
<td>go</td>
<td>hold</td>
<td>move</td>
<td>put down</td>
<td>snatch</td>
<td>turn</td>
</tr>
<tr>
<td>attach</td>
<td>chase</td>
<td>enter</td>
<td>fly</td>
<td>hand</td>
<td>kick</td>
<td>open</td>
<td>raise</td>
<td>stop</td>
<td>walk</td>
</tr>
<tr>
<td>bounce</td>
<td>close</td>
<td>exchange</td>
<td>follow</td>
<td>haul</td>
<td>jump</td>
<td>pass</td>
<td>receive</td>
<td>take</td>
<td></td>
</tr>
<tr>
<td>bury</td>
<td>collide</td>
<td>exit</td>
<td>get</td>
<td>have</td>
<td>leave</td>
<td>pick up</td>
<td>replace</td>
<td>throw</td>
<td></td>
</tr>
</tbody>
</table>

impossible under certain circumstances
Human physiology (L1)

- o1 member-of Canonical-Human-Walking, then:
 - o1 realization-of sdc1
 - sdc1 instance-of Disposition-to-Walk at t
 - sdc1 inheres-in c1 at t
 - c1 instance-of Canonically-Limbed Human Being at t
 - o1 has-agent c1 at t
 - o1 has-part o2
 - o2 instance-of Walking Leg Motion
 - o2 has-agent c2 at t
 - c2 part-of c1 at t
 - c2 instance-of Left Lower Limb at t
 -
 - o3 instance-of Walking Leg Motion
 - o3 has-agent c3 at t
 - c3 part-of c1 at t
 - c3 instance-of Right Lower Limb at t
 - c1 located-in r1 at t0
 - t0 earlier t
 - c1 located-in r2 at t1
 - t earlier t1
 - ...

But: elliptical work-out, walking in circle, …
Human anatomy applied to video frames

- Detection and grounding of manifolds:
 - m1, denotes c6 at t?
 - m2, denotes c7 at t?
 - m3, denotes c2 at t?
 - m4, denotes c4 at t?
 - m5, denotes c5 at t?
Elements of ontology-based reasoning

• Projection of RCC and MCC in L3 to portions of reality in L1:
 – EC → adjacent-to
 – shrink → shrinking
 → moving away from camera
 – hit → approach in front or behind object
 – hit < shrink → ‘shrinking’ object passed behind
 – …

• Human in the loop
Work in progress

• Finished:
 – Feasibility assessment by team
 – Core ontological principles

• Started:
 – Population of ontology
 – Documentation of invariants

• Next steps:
 – annotation of ‘verbs’ in terms of RUs from the ontology
 – development of reasoning engine
 – integration with manifold detection and tracking