Probability and Logic:
Bayesian Semantics

Kathryn Blackmond Laskey

George Mason University
Department of Systems Engineering and Operations Research

STIDS 2011 Tutorial Part 3

/
15 November 2011 mESORG



In the olden days...

« We fought big wars
— Against monolithic enemies
— Who employed rigid doctrine
— And fought in predictable ways

« We Dbuilt stovepipe systems

— Used by a single organization
for a single purpose

— With idiosyncratic representations and I/O formats

— Requiring labor-intensive manual transformation of
outputs for use by another stovepipe

« Semantics were in the mind of the human
— Natural language documentation
— Data structures embedded in code

...and then the

world changed.




The Age of Semantics

* Today's systems require formal, machine-
iInterpretable semantics

— Provider and consumer share understanding of inputs
and expected outputs

— Formerly manual functions are fully
or partially automated
« Data interchange
* Information retrieval
» Content extraction
» Discovery of capabilities

— Users interact with systems at
knowledge level




Logic

* Technology for formal, machine-interpretable
semantics is founded on logic

* Logic is the study of precise patterns of reasoning

— Formalize reasoning so it can be carried out
automatically

* Russell and Norvig (2002) define a logic as:

— A formal language for representing
knowledge B AR ORI
* Must have precisely defined syntax
and semantics
— A means of carrying out reasoning in
such a language

« Must have precisely defined reasoning e 9
processes that map appropriately to the —x\
3 Semant|cs Of the Ianguage Logic: another thing that

penguins aren’t very good at.



Some History

Aristotle’s classical syllogisms
(4™ century BCE)

Leibnitz’ formalization of Aristotle’s syllogisms
(17t century)

Boolean logic (19" century)

First-order logic by Frege and Pierce
(late 19t century) Ay
Undecidability results, higher order N
logics, modal logics (20t century) [}

Computational logic (late 20t
century)




Propositional (Sentential) Logic

« Studies logical relationships among propositions

— A proposition is a declarative statement

— Complex propositions are built up from elementary
propositions using logical connectives

— Reasoning derives truth-value of conclusions from truth-
values of premises

* |nsufficiently expressive for expressing semantics
of real-world problems
— Cannot express generalizations

— Elementary propositions are

Indivisible units with no inner
structure

. » But useful as a starting point
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ExamEIe: Vehicle Identification

Elementary Propositions:
» K (Tracked vehicle)
» R (On road)
» F (Traveling fast)

AXioms:

» -K—R (Wheeled
vehicle cannot go off-
road)

» K—=F (Tracked vehicle
cannot be traveling fast)

To reason about more than one vehicle, we need to
replicate the propositions and axioms “by hand”. e ORGE
) “K—R and K—~F fori=1, ..., N Mas
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Possible Worlds

« Axioms define a set of “possible worlds”

consistent with axioms
— Worlds with tracked venhicle traveling fast and
wheeled venhicle off-road are impossible

» A truth table uses
truth-values of the
elementary
propositions to
determine which .
worlds are possible : T T T T

F




Uncertainty is Ubiquitous

* There are many kinds of uncertainty, including:

— Noise in sensors
— Intrinsic unpredictability of complex processes

— Incorrect, incomplete, deceptive intelligence reports

— Poor understanding of cause and effect relationships
* Representing and reasoning with uncertainty is

essential

* Traditional semantic
technology provides no
support for uncertainty
management

“Traditional or deductive logic admits only three attitudes \DISORIENTED
§ to any proposition: definite proof, disproof, or blank ignorance.” - J&%




Probability

Invented by Laplace, Bernoulli, Bayes in late 18t
century

Many theoretical developments and practical
applications in 19" and 20™ centuries
— Formalized set theoretically by Kolmogorov in 1933

— Formalized as extension to propositional logic by
Cox in 1946

Intense debate on what probability means
Early work (pre 1985) in knowledge representation

ignored probability @

Probabilistic KR became very active after
Introduction of graphical probability models




Disclaimer
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« This talk focuses on probability

« There are other ways to generalize logic to obtain truth-values
intermediate between proof and disproof

« Other formalisms are also being integrated with semantic technology
* One prominent example is fuzzy logic

Probability Fuzzy logic

* Attach numerical value to
ordinary “crisp” proposition

*The proposition is (or will be)
definitely true or definitely false

* Use traditional logical connectives
with usual meaning

*Example: “There is a probability
of 70% that Mary is between 22
and 28 years old.”

 Attach numerical value to “fuzzy”
proposition

*The proposition has a truth-value
intermediate between true and
false

*Generalize logical connectives to
combine degrees of truth

*Example: “Mary has a 70%
membership in the set of young
adults.




Interpretations of Probability

1. Classical - Ratio of favorable cases to total (equipossible)
cases

2. Frequency - Limiting value as the number of trials becomes
infinite of the frequency of occurrence of some type of event

3. Logical - Logical property of one’s state of information about
a phenomenon

4. Propensity - Propensity for certain kinds of event to occur in
nature

5. Subjective - Ideal rational agent’s degree of belief about an
uncertain event

6. Game Theoretic - Agent’s optimal “announced certainty” for
an event in a multi-agent game in which agents receive
rewards that depend on forecasts and outcomes y

11 1-4 are ontological; 5-6 are epistemological mES(BN
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Possible and Probable Worlds

* Propositional logic can be extended to incorporate
uncertainty by assigning a probability to each possible world

T T 0
T T F T T T 7.5%
T 0
T F F T T F 25%
F T T T T T 54%
F T F T T T 13.5%
T 0
B e e F 0

Total Probability = 100%
" Pr(FvR) =7.5% + 54% + 13.2% = 75%
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Combinatorics and Graphical Models

« While theoretically straightforward, combinatorics
can be prohibitive
— With 79 propositions we have 27° = 6.04x1023
probabilities (more than Avogadro’s number)!
* Enter graphical probability models
— Graph encodes dependencies among propositions
— Numerical probabilities specified for a few

ropositions at a time v
p p a . rackedVehicle(K) @
— Tractable specification and
iInference for problems with
thousands of propositions I

GISOnRoad(G)

Brute-force specification: 127 probabilities
13 Bayesian network: 14 probabilities

ImageTracked(l)



Probabilistic Reasoning

* Probabilistic reasoning generalizes logical proof

— Provable propositions have 100% probability
— Incorporates knowledge falling short of proof

— Accrues evidence incrementally via Bayes Rule
« Many available off-the-shelf tools
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IncorEorating Evidence

U
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Repeated structure

— Different types of entity

— Multiple entities of each type behave similarly

Entities are related

— Which vehicles go with which reports?
— Are there unreported vehicles? Spurious reports?
Situation evolves in time

— Vehicles move
— New reports arrive
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First-Order Logic

« Extends expressive power of propositional logic

— Propositions have inner structure

— Can express generalizations
» For all numbers n and m, n+m is equal to m+n
» There is an air defense site next to every airport
» No wheeled vehicle can travel off-road
» First-order logic is to !
propositional logic as
algebra is to arithmetic
* Most ontology languages

are based on some C a8
fragment of first-order logic & = -~




Vehicles Revisited: FOL Version

* Propositions have inner structure
V(X) : x is a vehicle K(x) : x is tracked
L(x) : location of x F(x) : x is traveling fast
R(x) : X is a road

« Can represent:
— Different types of entity, e.g., vehicles and roads
— Relationships among entities
— Functional relationships, e.g., location of object
— Rules that apply to all entities of a given type, e.g.:
e Vx V(x) — K(x) =F(x)
¢ VX V(X) = =K(x) = R(L(x))
— Particular individual entities, e.g., O5, O,
. - Equality, e.g., 0,=L(0,) MEssse
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First-Order Possible Worlds
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* A world for a first-order vocabulary consists of:

— A set D called the domain
e e.g.. vehicles, roads, and possibly other things

— An element of D for each constant symbol
* e.g., aroad for O, and a vehicle for O,

— Arelation on D for each relation symbol
* e.g., the set of objects which are roads for R(x)

— A function taking arguments in D and having value in
D for each function symbol

» E.g., a function mapping each object to a location (road or
non-road) for L(x)

 Aworld is possible for a set of axioms if all the
axioms are true in the world Mzoace
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Aside: Terminological Confusion

* Alogician calls a possible world for a set of
axioms a model of the axioms
— Logician writes axioms representing Newton’s laws
— Logician calls a world in which objects obey Newton'’s
laws a model of the axioms

* An engineer calls a set of equations that are true
iIn @ domain a model of the domain
— Engineer writes equations expressing Newton's laws
— Engineer calls these equations a model of a world in
which objects obey Newton'’s laws

* To avoid confusion, | use “possible world” rather

than “model” Z
. B1GEORGE
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Probability and FOL
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We extended propositional logic to express knowledge
intermediate between proof and disproof

We would like to do the same with FOL

We do this by assigning probabilities to sets of
possible worlds

Doing this consistently and tractably is a challenge
History:

— Carnap (1950) developed a probability logic for a restricted
language

— Gaifman (1964 ) developed general theory of probability on sets
of first-order possible worlds

— Research on expressive computational probability logics became
active in the late 1990’s

Few usable tools yet exist for the practitioner
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Multi-Entity Bayesian Networks
—e———— =2 Sk ey, 2008

 Afirst-order probabilistic logic
* Represent knowledge as “parameterized BN fragments”
 Instantiate to reason about specific situations

- ™
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Markov Logic Networks
(Richardson and Domingos, 2006)

Table I. Example of a first-order knowledge base and MLN. Fr() is short for Friends(), Sm() for Smokes(), and Ca()
for Cancer().

English First-Order Logic Clausal Form Weight
Friends of friends are friends.  VxVyVz Fr(x,y) AFr(y, z) = Fr(x,z) —-Fr(x,y)V —-Fr(y,z) Vv Fr(x,z) 0.7
Friendless people smoke. Vx (—(3y Fr(x,y)) = Sm(x)) Fr(x, g(x)) V Sm(x) 23
Smoking causes cancer. Vx Sm(x) = Ca(x) —-Sm(x) V Ca(x) 1.5
If two people are friends, cither VxVy Fr(x,y) = (Sm(x) <> Sm(y)) —=Fr(x,y) V Sm(x) vV —Sn(y), 1.1
both smoke or neither does. =Fr(x,y) VvV —Sm(x) V Sn(y) 1.1

¥

(Friends(A.B)

o

N

Friends(B,A)

/G EORGE
Figure 1. Ground Markov network obtained by applying the last two formulas in Table I to ms
the constants Anna(A) and Bob(B). UNIVERS

Friends(A,A) Friends(B,B)
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Probability Logic

« Many first-order probabilistic languages have
recently been developed (c.f., Milch and Russell,
2007)

« Languages draw on different metaphors
— Database metaphor — probabilistic relational models
— OO metaphor — object-oriented Bayesian networks

— Logic metaphor — multi-entity Bayesian networks,
Markov logic networks

— Random variable metaphor — plates

* All these languages can be viewed as defining
probabilities on first-order possible worlds

P [/GEORGE
24
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Probability and Ontologies
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* A computational ontology (little o) represents
— Types of objects
— Relationships among objects
— Properties of objects
— Processes and events involving objects

* A probabilistic ontology™ also represents

uncertainty about objects, relationships,
properties, processes and events
— Assigns probabilities to possible worlds

— Respects semantics of the deterministic part of the
ontology

*Some object to using the word “ontology” for probabilistic knowledge. Regardless mESORGE
of label, there is a need for integrating probability with semantic technology
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Canonical Reasoning Problems
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Property value uncertainty — what is the probability
that an individual has a property with a given value?

Type uncertainty — what is the probability that an
individual belongs to a class?

Reference uncertainty — which individual plays a
given role?

Identity uncertainty — what is the probability that two
names refer to the same individual?

Existence uncertainty — what is the probability that a
hypothesized individual actually exists?

All these can be reduced to property value uncertainty
(Poole, et al, 2008)
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Learning

» Traditional logic is concerned with deduction —
deriving logical consequences of a set of axioms

* Probability and statistics are concerned with
Induction — deriving abstractions to generalize
observations

* The data mining and machine learning
communities are turning to expressive probability
logics for powerful, theory-based inductive
learning methods

* This class of techniques is known as Statistical
Relational Learning (SRL)

27 I! hSGEO(’Sﬁ
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Representing Parameter Learning
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Structure and Parameter Learning

* A probabilistic theory is usually specified by
defining:
— Structure — typically a graph representing
dependencies

— Parameters — typically functions defined on small
clusters of propositions representing strength of
dependency

* We can represent both structure
and parameters explicitly in our

knowledge representationand .~ &2 2
expose them to reasoning N

* Thus learning is integral to & \&»
. probability logic 455 0
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Tractability

* Worst case tractability of FOL + probability
IS, of course, undecidable

 Efficient exact algorithms exist for
restricted (but useful) classes of problems

 Efficient approximations exist for larger
classes of problems

* Research is ongoing on characterizing
classes of problems and the complexity of
methods for those classes

UNI YV
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Conclusion
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* Atheory in classical logic defines a set of
possible worlds consistent with the theory

* A probabillistic logic assigns probabilities
consistently to sets of possible worlds

* Expressive probability logics
— Assign probabilities in a way that respects the domain

semantics

— Make use of knowledge that falls short of proof
— Support evidential accrual

— Provide built-in learning theory

* Technology for semantically aware uncertainty
management is a powerful innovation M
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