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In the olden days… 
•  We fought big wars  

–  Against monolithic enemies 
–  Who employed rigid doctrine 
–  And fought in predictable ways 

•  We built stovepipe systems  
–  Used by a single organization  

for a single purpose 
–  With idiosyncratic representations and I/O formats 
–  Requiring labor-intensive manual transformation of 

outputs for use by another stovepipe  
•  Semantics were in the mind of the human  

–  Natural language documentation 
–  Data structures embedded in code 

…and	
  then	
  the	
  
world	
  changed.	
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The Age of Semantics 
•  Today’s systems require formal, machine-

interpretable semantics 
–  Provider and consumer share understanding of inputs 

and expected outputs 
–  Formerly manual functions are fully  

or partially automated 
•  Data interchange 
•  Information retrieval  
•  Content extraction 
•  Discovery of capabilities 

–  Users interact with systems at  
knowledge level 
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Logic 
•  Technology for formal, machine-interpretable 

semantics is founded on logic 
•  Logic is the study of precise patterns of reasoning 

–  Formalize reasoning so it can be carried out 
automatically 

•  Russell and Norvig (2002) define a logic as: 
–  A formal language for representing  

knowledge 
•  Must have precisely defined syntax  

and semantics 
–  A means of carrying out reasoning in  

such a language 
•  Must have precisely defined reasoning  

processes that map appropriately to the  
semantics of the language 
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Some History 
•  Aristotle’s classical syllogisms  

(4th century BCE) 
•  Leibnitz’ formalization of Aristotle’s syllogisms  

(17th century) 
•  Boolean logic (19th century) 
•  First-order logic by Frege and Pierce  

(late 19th century) 
•  Undecidability results, higher order  

logics, modal logics (20th century) 
•  Computational logic (late 20th  

century) 
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Propositional (Sentential) Logic 
•  Studies logical relationships among propositions   

–  A proposition is a declarative statement  
–  Complex propositions are built up from elementary 

propositions using logical connectives 
–  Reasoning derives truth-value of conclusions from truth-

values of premises 
•  Insufficiently expressive for expressing semantics 

of real-world problems 
–  Cannot express generalizations 
–  Elementary propositions are  

indivisible units with no inner  
structure 

•  But useful as a starting point 
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Example: Vehicle Identification 

Elementary Propositions: 
»  K  (Tracked vehicle) 
»  R  (On road) 
»  F  (Traveling fast) 

Axioms: 
»  ¬K→R  (Wheeled 

vehicle cannot go off-
road) 

»  K→¬F (Tracked vehicle 
cannot be traveling fast) 

To reason about more than one vehicle, we need to 
replicate the propositions and axioms “by hand”: 
     ¬Ki→Ri and Ki→¬Fi for i=1, …, N 
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Possible Worlds 
•  Axioms define a set of “possible worlds” 

consistent with axioms 
–  Worlds with tracked vehicle traveling fast and 

wheeled vehicle off-road are impossible 
•  A truth table uses  

truth-values of the  
elementary  
propositions to  
determine which  
worlds are possible 
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Uncertainty is Ubiquitous 
•  There are many kinds of uncertainty, including: 

–  Noise in sensors 
–  Intrinsic unpredictability of complex processes 
–  Incorrect, incomplete, deceptive intelligence reports 
–  Poor understanding of cause and effect relationships 

•  Representing and reasoning with uncertainty is 
essential 

•  Traditional semantic  
technology provides no 
support for uncertainty  
management 

“Traditional or deductive logic admits only three attitudes  
to any proposition: definite proof, disproof, or blank ignorance.” - Jeffreys 
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Probability 
•  Invented by Laplace, Bernoulli, Bayes in late 18th 

century 
•  Many theoretical developments and practical 

applications in 19th and 20th centuries 
–  Formalized set theoretically by Kolmogorov in 1933 
–  Formalized as extension to propositional logic by  

Cox in 1946 
•  Intense debate on what probability means 
•  Early work (pre 1985) in knowledge representation 

ignored probability 
•  Probabilistic KR became very active after 

introduction of graphical probability models 
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Disclaimer 
•  This talk focuses on probability 
•  There are other ways to generalize logic to obtain truth-values 

intermediate between proof and disproof 
•  Other formalisms are also being integrated with semantic technology 
•  One prominent example is fuzzy logic 

Probability	
   Fuzzy	
  logic	
  

• A=ach	
  numerical	
  value	
  to	
  
ordinary	
  “crisp”	
  proposiGon	
  

• The	
  proposiGon	
  is	
  (or	
  will	
  be)	
  
definitely	
  true	
  or	
  definitely	
  false	
  

• Use	
  tradiGonal	
  logical	
  connecGves	
  
with	
  usual	
  meaning	
  

• Example:	
  “There	
  is	
  a	
  probability	
  
of	
  70%	
  that	
  Mary	
  is	
  between	
  22	
  
and	
  28	
  years	
  old.”	
  

• A=ach	
  numerical	
  value	
  to	
  “fuzzy”	
  
proposiGon	
  

• The	
  proposiGon	
  has	
  a	
  truth-­‐value	
  
intermediate	
  between	
  true	
  and	
  
false	
  

• Generalize	
  logical	
  connecGves	
  to	
  
combine	
  degrees	
  of	
  truth	
  

• Example:	
  “Mary	
  has	
  a	
  70%	
  
membership	
  in	
  the	
  set	
  of	
  young	
  
adults.	
  



11 	
  	
  

Interpretations of Probability 
1.  Classical - Ratio of favorable cases to total (equipossible) 

cases"
2.  Frequency - Limiting value as the number of trials becomes 

infinite of the frequency of occurrence of some type of event"
3.  Logical - Logical property of oneʼs state of information about 

a phenomenon"
4.  Propensity - Propensity for certain kinds of event to occur in 

nature"
5.  Subjective - Ideal rational agentʼs degree of belief about an 

uncertain event"
6.  Game Theoretic - Agentʼs optimal “announced certainty” for 

an event in a multi-agent game in which agents receive 
rewards that depend on forecasts and outcomes"

1-4 are ontological; 5-6 are epistemological 
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Possible and Probable Worlds 
•  Propositional logic can be extended to incorporate 

uncertainty by assigning a probability to each possible world 
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Pr(F∨R) = 7.5% + 54% + 13.2% =  75%  
Total Probability = 100% 
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Combinatorics and Graphical Models 

•  While theoretically straightforward, combinatorics 
can be prohibitive 
–  With 79 propositions we have 279 = 6.04x1023 

probabilities (more than Avogadro’s number)! 
•  Enter graphical probability models 

–  Graph encodes dependencies among propositions 
–  Numerical probabilities specified for a few  

propositions at a time 
–  Tractable specification and  

inference for problems with  
thousands of propositions  

Brute-force specification: 127 probabilities 
Bayesian network: 14 probabilities 
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Probabilistic Reasoning 
•  Probabilistic reasoning generalizes logical proof 

–  Provable propositions have 100% probability 
–  Incorporates knowledge falling short of proof 
–  Accrues evidence incrementally via Bayes Rule 

•  Many available off-the-shelf tools 
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Incorporating Evidence 

Pr(K)=32.5% 
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Pr(K|¬F) = 70.65% 

We learn vehicle is 
not traveling fast 
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What a BN Cannot Represent 
•  Repeated structure 

–  Different types of entity 
–  Multiple entities of each type behave similarly  

•  Entities are related 
–  Which vehicles go with which reports? 
–  Are there unreported vehicles? Spurious reports? 

•  Situation evolves in time 
–  Vehicles move 
–  New reports arrive 
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First-Order Logic 
•  Extends expressive power of propositional logic 

–  Propositions have inner structure 
–  Can express generalizations 

»  For all numbers n and m, n+m is equal to m+n 
»  There is an air defense site next to every airport 
»  No wheeled vehicle can travel off-road 

•  First-order logic is to  
propositional logic as  
algebra is to arithmetic 

•  Most ontology languages  
are based on some  
fragment of first-order logic 
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Vehicles Revisited: FOL Version 
•  Propositions have inner structure 

V(x) : x is a vehicle  K(x) : x is tracked 
L(x) : location of x  F(x) : x is traveling fast 

  R(x) : x is a road 
•  Can represent: 

–  Different types of entity, e.g., vehicles and roads 
–  Relationships among entities 
–  Functional relationships, e.g., location of object 
–  Rules that apply to all entities of a given type, e.g.: 

•  ∀x V(x) → K(x) ¬F(x) 
•  ∀x V(x) → ¬K(x) → R(L(x))  

–  Particular individual entities, e.g., O3, O7 
–  Equality, e.g., O3=L(O7) 
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First-Order Possible Worlds 
•  A world for a first-order vocabulary consists of: 

–  A set D called the domain 
•  e.g.. vehicles, roads, and possibly other things 

–  An element of D for each constant symbol 
•  e.g., a road for O3 and a vehicle for O7 

–  A relation on D for each relation symbol 
•  e.g., the set of objects which are roads for R(x) 

–  A function taking arguments in D and having value in 
D for each function symbol 

•  E.g., a function mapping each object to a location (road or 
non-road) for L(x) 

•  A world is possible for a set of axioms if all the 
axioms are true in the world 
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Aside: Terminological Confusion 
•  A logician calls a possible world for a set of 

axioms a model of the axioms 
–  Logician writes axioms representing Newton’s laws 
–  Logician calls a world in which objects obey Newton’s 

laws a model of the axioms 
•  An engineer calls a set of equations that are true 

in a domain a model of the domain   
–  Engineer writes equations expressing Newton’s laws 
–  Engineer calls these equations a model of a world in 

which objects obey Newton’s laws 
•  To avoid confusion, I use “possible world” rather 

than “model” 
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Probability and FOL 
•  We extended propositional logic to express knowledge 

intermediate between proof and disproof 
•  We would like to do the same with FOL 
•  We do this by assigning probabilities to sets of  

possible worlds 
•  Doing this consistently and tractably is a challenge 
•  History: 

–  Carnap (1950) developed a probability logic for a restricted 
language 

–  Gaifman (1964) developed general theory of probability on sets 
of first-order possible worlds  

–  Research on expressive computational probability logics became 
active in the late 1990’s 

•  Few usable tools yet exist for the practitioner 
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Multi-Entity Bayesian Networks 
(Laskey, 2008)  

•  A first-order probabilistic logic 
•  Represent knowledge as “parameterized BN fragments” 
•  Instantiate to reason about specific situations 
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Markov Logic Networks 
(Richardson and Domingos, 2006)  
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Probability Logic 
•  Many first-order probabilistic languages have 

recently been developed (c.f., Milch and Russell, 
2007) 

•  Languages draw on different metaphors 
–  Database metaphor – probabilistic relational models 
–  OO metaphor – object-oriented Bayesian networks 
–  Logic metaphor – multi-entity Bayesian networks, 

Markov logic networks 
–  Random variable metaphor – plates  

•  All these languages can be viewed as defining 
probabilities on first-order possible worlds  
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Probability and Ontologies 
•  A computational ontology (little o) represents 

–  Types of objects 
–  Relationships among objects 
–  Properties of objects 
–  Processes and events involving objects 

•  A probabilistic ontology* also represents 
uncertainty about objects, relationships, 
properties, processes and events 
–  Assigns probabilities to possible worlds 
–  Respects semantics of the deterministic part of the 

ontology 

*Some object to using the word “ontology” for probabilistic knowledge. Regardless 
of label, there is a need for integrating probability with semantic technology 
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Canonical Reasoning Problems 
•  Property value uncertainty – what is the probability 

that an individual has a property with a given value? 
•  Type uncertainty – what is the probability that an 

individual belongs to a class? 
•  Reference uncertainty – which individual plays a 

given role? 
•  Identity uncertainty – what is the probability that two 

names refer to the same individual? 
•  Existence uncertainty – what is the probability that a 

hypothesized individual actually exists? 

All these can be reduced to property value uncertainty 
(Poole, et al, 2008) 
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Learning 
•  Traditional logic is concerned with deduction – 

deriving logical consequences of a set of axioms 
•  Probability and statistics are concerned with 

induction – deriving abstractions to generalize 
observations 

•  The data mining and machine learning 
communities are turning to expressive probability 
logics for powerful, theory-based inductive 
learning methods 

•  This class of techniques is known as Statistical 
Relational Learning (SRL) 
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Representing Parameter Learning 

Prior  distribution  
for Λ  and X 

Posterior distribution  
for Λ  given X 

Diagrams produced using Netica™ 
software – available from http://

www.norsys.com 

Task: Use data from 6 1-hour 
observation periods to infer rate 
of transmission errors per hour   
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Structure and Parameter Learning 
•  A probabilistic theory is usually specified by 

defining:  
–  Structure – typically a graph representing 

dependencies 
–  Parameters – typically functions defined on small 

clusters of propositions representing strength of 
dependency 

•  We can represent both structure  
and parameters explicitly in our  
knowledge representation and  
expose them to reasoning 

•  Thus learning is integral to 
probability logic 
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Tractability 
•  Worst case tractability of FOL + probability 

is, of course, undecidable 
•  Efficient exact algorithms exist for 

restricted (but useful) classes of problems 
•  Efficient approximations exist for larger 

classes of problems 
•  Research is ongoing on characterizing 

classes of problems and the complexity of 
methods for those classes 
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Conclusion 
•  A theory in classical logic defines a set of 

possible worlds consistent with the theory 
•  A probabilistic logic assigns probabilities 

consistently to sets of possible worlds 
•  Expressive probability logics  

–  Assign probabilities in a way that respects the domain 
semantics 

–  Make use of knowledge that falls short of proof 
–  Support evidential accrual 
–  Provide built-in learning theory 

•  Technology for semantically aware uncertainty 
management is a powerful innovation 
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