Probability and Logic: Bayesian Semantics

Kathryn Blackmond Laskey

George Mason University

Department of Systems Engineering and Operations Research

STIDS 2011 Tutorial Part 3

15 November 2011

In the olden days...

- We fought big wars
 - Against monolithic enemies
 - Who employed rigid doctrine
 - And fought in predictable ways
- We built stovepipe systems
 - Used by a single organization for a single purpose
 - With idiosyncratic representations and I/O formats
 - Requiring labor-intensive manual transformation of outputs for use by another stovepipe
- Semantics were in the mind of the human
 - Natural language documentation
 - Data structures embedded in code

...and then the world changed.

The Age of Semantics

- Today's systems require formal, machineinterpretable semantics
 - Provider and consumer share understanding of inputs and expected outputs
 - Formerly manual functions are fully or partially automated
 - Data interchange
 - Information retrieval
 - Content extraction
 - Discovery of capabilities
 - Users interact with systems at knowledge level

Logic

- Technology for formal, machine-interpretable semantics is founded on logic
- Logic is the study of precise patterns of reasoning
 - Formalize reasoning so it can be carried out automatically
- Russell and Norvig (2002) define a logic as:
 - A formal language for representing knowledge
 - Must have precisely defined syntax and semantics
 - A means of carrying out reasoning in such a language
 - Must have precisely defined reasoning processes that map appropriately to the semantics of the language

Some History

- Aristotle's classical syllogisms (4th century BCE)
- Leibnitz' formalization of Aristotle's syllogisms (17th century)
- Boolean logic (19th century)
- First-order logic by Frege and Pierce (late 19th century)
- Undecidability results, higher order logics, modal logics (20th century)
- Computational logic (late 20th century)

Propositional (Sentential) Logic

- Studies logical relationships among propositions
 - A proposition is a declarative statement
 - Complex propositions are built up from elementary propositions using logical connectives
 - Reasoning derives truth-value of conclusions from truthvalues of premises
- Insufficiently expressive for expressing semantics of real-world problems
 - Cannot express generalizations
 - Elementary propositions are indivisible units with no inner structure
- But useful as a starting point

p	q	p & q	$p \vee q$	$p \rightarrow q$	$p \leftrightarrow q$
T	T	T	T	T	T
T	F	F	T	F	F
F	T	F	T	T	F
F	F	F	F	T	T

Example: Vehicle Identification

Elementary Propositions:

- » K (Tracked vehicle)
- » R (On road)
- » F (Traveling fast)

Axioms:

- » ¬K→R (Wheeled vehicle cannot go off-road)
- » K→¬F (Tracked vehicle cannot be traveling fast)

To reason about more than one vehicle, we need to replicate the propositions and axioms "by hand": $\neg K_i \rightarrow R_i$ and $K_i \rightarrow \neg F_i$ for i=1, ..., N

Possible Worlds

- Axioms define a set of "possible worlds" consistent with axioms
 - Worlds with tracked vehicle traveling fast and wheeled vehicle off-road are impossible
- A truth table uses truth-values of the elementary propositions to determine which worlds are possible

K	R	F	¬K→R	K→¬F
T	T			F
Т	Т	F	Т	Т
T	F			F
Т	F	F	Т	Т
F	Т	Т	Т	Т
F	Т	F	Т	Т
F	F	T		T
F	F	F	F	T

Uncertainty is Ubiquitous

- There are many kinds of uncertainty, including:
 - Noise in sensors
 - Intrinsic unpredictability of complex processes
 - Incorrect, incomplete, deceptive intelligence reports
 - Poor understanding of cause and effect relationships

Representing and reasoning with uncertainty is

essential

 Traditional semantic technology provides no support for uncertainty management

Probability

- Invented by Laplace, Bernoulli, Bayes in late 18th century
- Many theoretical developments and practical applications in 19th and 20th centuries
 - Formalized set theoretically by Kolmogorov in 1933
 - Formalized as extension to propositional logic by Cox in 1946
- Intense debate on what probability means
- Early work (pre 1985) in knowledge representation ignored probability
- Probabilistic KR became very active after introduction of graphical probability models

Disclaimer

- This talk focuses on probability
- There are other ways to generalize logic to obtain truth-values intermediate between proof and disproof
- Other formalisms are also being integrated with semantic technology
- One prominent example is fuzzy logic

Probability

- Attach numerical value to ordinary "crisp" proposition
- The proposition is (or will be) definitely true or definitely false
- Use traditional logical connectives with usual meaning
- Example: "There is a probability of 70% that Mary is between 22 and 28 years old."

Fuzzy logic

- Attach numerical value to "fuzzy" proposition
- The proposition has a truth-value intermediate between true and false
- Generalize logical connectives to combine degrees of truth
- Example: "Mary has a 70% membership in the set of young adults.

Interpretations of Probability

- Classical Ratio of favorable cases to total (equipossible) cases
- 2. <u>Frequency</u> Limiting value as the number of trials becomes infinite of the frequency of occurrence of some type of event
- 3. <u>Logical</u> Logical property of one's state of information about a phenomenon
- Propensity Propensity for certain kinds of event to occur in nature
- <u>Subjective</u> Ideal rational agent's degree of belief about an uncertain event
- 6. <u>Game Theoretic</u> Agent's optimal "announced certainty" for an event in a multi-agent game in which agents receive rewards that depend on forecasts and outcomes

Possible and Probable Worlds

 Propositional logic can be extended to incorporate uncertainty by assigning a probability to each possible world

K	R	F	¬K→R	K→¬F	F∨R	Prob
T			Ŧ	F	Т	0
Т	Т	F	Т	Т	Т	7.5%
T	F	T	T	F	Т	0
Т	F	F	Т	Т	F	25%
F	Т	Т	Т	Т	Т	54%
F	Т	F	Т	Т	Т	13.5%
F	F	T		T	Т	0
F	F	F	F		F	0

Total Probability = 100%

$$Pr(F \lor R) = 7.5\% + 54\% + 13.2\% = 75\%$$

Combinatorics and Graphical Models

- While theoretically straightforward, combinatorics can be prohibitive
 - With 79 propositions we have $2^{79} = 6.04 \times 10^{23}$ probabilities (more than Avogadro's number)!
- Enter graphical probability models
 - Graph encodes dependencies among propositions
 - Numerical probabilities specified for a few

propositions at a time

 Tractable specification and inference for problems with thousands of propositions

Probabilistic Reasoning

- Probabilistic reasoning generalizes logical proof
 - Provable propositions have 100% probability
 - Incorporates knowledge falling short of proof
 - Accrues evidence incrementally via Bayes Rule
- Many available off-the-shelf tools

Incorporating Evidence

Pr(K)=32.5% $Pr(K|\neg F) = 70.65\%$

We learn vehicle is not traveling fast

What a BN Cannot Represent

- Repeated structure
 - Different types of entity
 - Multiple entities of each type behave similarly
- Entities are related
 - Which vehicles go with which reports?
 - Are there unreported vehicles? Spurious reports?
- Situation evolves in time
 - Vehicles move
 - New reports arrive

First-Order Logic

- Extends expressive power of propositional logic
 - Propositions have inner structure
 - Can express generalizations
 - » For all numbers n and m, n+m is equal to m+n
 - » There is an air defense site next to every airport
 - » No wheeled vehicle can travel off-road
- First-order logic is to propositional logic as algebra is to arithmetic
- Most ontology languages are based on some fragment of first-order logic

Vehicles Revisited: FOL Version

Propositions have inner structure

V(x): x is a <u>v</u>ehicle K(x): x is tracked

 $L(x) : \underline{l}$ ocation of x F(x) : x is traveling \underline{f} ast

R(x): x is a road

- Can represent:
 - Different types of entity, e.g., vehicles and roads
 - Relationships among entities
 - Functional relationships, e.g., location of object
 - Rules that apply to all entities of a given type, e.g.:
 - $\forall x \ V(x) \rightarrow K(x) \ \neg F(x)$
 - $\forall x \ V(x) \rightarrow \neg K(x) \rightarrow R(L(x))$
 - Particular individual entities, e.g., O₃, O₇
 - Equality, e.g., $O_3 = L(O_7)$

First-Order Possible Worlds

- A world for a first-order vocabulary consists of:
 - A set D called the domain
 - e.g., vehicles, roads, and possibly other things
 - An element of D for each constant symbol
 - e.g., a road for O₃ and a vehicle for O₇
 - A relation on D for each relation symbol
 - e.g., the set of objects which are roads for R(x)
 - A function taking arguments in D and having value in D for each function symbol
 - E.g., a function mapping each object to a location (road or non-road) for L(x)
- A world is possible for a set of axioms if all the axioms are true in the world

Aside: Terminological Confusion

- A logician calls a possible world for a set of axioms a model of the axioms
 - Logician writes axioms representing Newton's laws
 - Logician calls a world in which objects obey Newton's laws a model of the axioms
- An engineer calls a set of equations that are true in a domain a model of the domain
 - Engineer writes equations expressing Newton's laws
 - Engineer calls these equations a model of a world in which objects obey Newton's laws
- To avoid confusion, I use "possible world" rather than "model"

Probability and FOL

- We extended propositional logic to express knowledge intermediate between proof and disproof
- We would like to do the same with FOL
- We do this by assigning probabilities to sets of possible worlds
- Doing this consistently and tractably is a challenge
- History:
 - Carnap (1950) developed a probability logic for a restricted language
 - Gaifman (1964) developed general theory of probability on sets of first-order possible worlds
 - Research on expressive computational probability logics became active in the late 1990's
- Few usable tools yet exist for the practitioner

Multi-Entity Bayesian Networks

(Laskey, 2008)

- A first-order probabilistic logic
- Represent knowledge as "parameterized BN fragments"
- Instantiate to reason about specific situations

Markov Logic Networks

(Richardson and Domingos, 2006)

Table I. Example of a first-order knowledge base and MLN. Fr() is short for Friends(), Sm() for Smokes(), and Ca() for Cancer().

English	First-Order Logic	Clausal Form	Weight
Friends of friends are friends.	$\forall x \forall y \forall z Fr(x,y) \land Fr(y,z) \Rightarrow Fr(x,z)$	$\neg Fr(x, y) \lor \neg Fr(y, z) \lor Fr(x, z)$	0.7
Friendless people smoke.	$\forall \mathtt{x} \ (\neg(\exists \mathtt{y} \ \mathtt{Fr}(\mathtt{x},\mathtt{y})) \Rightarrow \mathtt{Sm}(\mathtt{x}))$	$Fr(x, g(x)) \vee Sm(x)$	2.3
Smoking causes cancer.	$\forall \mathtt{x} \ \mathtt{Sm}(\mathtt{x}) \Rightarrow \mathtt{Ca}(\mathtt{x})$	$\neg Sm(x) \lor Ca(x)$	1.5
If two people are friends, either	$\forall \mathtt{x} \forall \mathtt{y} \ \mathtt{Fr}(\mathtt{x},\mathtt{y}) \Rightarrow (\mathtt{Sm}(\mathtt{x}) \Leftrightarrow \mathtt{Sm}(\mathtt{y}))$	$\neg \mathtt{Fr}(\mathtt{x},\mathtt{y}) \vee \mathtt{Sm}(\mathtt{x}) \vee \neg \mathtt{Sm}(\mathtt{y}),$	1.1
both smoke or neither does.		$\neg \mathtt{Fr}(\mathtt{x},\mathtt{y}) \vee \neg \mathtt{Sm}(\mathtt{x}) \vee \mathtt{Sm}(\mathtt{y})$	1.1

Figure 1. Ground Markov network obtained by applying the last two formulas in Table I to the constants Anna(A) and Bob(B).

Probability Logic

- Many first-order probabilistic languages have recently been developed (c.f., Milch and Russell, 2007)
- Languages draw on different metaphors
 - Database metaphor probabilistic relational models
 - OO metaphor object-oriented Bayesian networks
 - Logic metaphor multi-entity Bayesian networks,
 Markov logic networks
 - Random variable metaphor plates
- All these languages can be viewed as defining probabilities on first-order possible worlds

Probability and Ontologies

- A computational ontology (little o) represents
 - Types of objects
 - Relationships among objects
 - Properties of objects
 - Processes and events involving objects
- A probabilistic ontology* also represents uncertainty about objects, relationships, properties, processes and events
 - Assigns probabilities to possible worlds
 - Respects semantics of the deterministic part of the ontology

Canonical Reasoning Problems

- Property value uncertainty what is the probability that an individual has a property with a given value?
- Type uncertainty what is the probability that an individual belongs to a class?
- Reference uncertainty which individual plays a given role?
- Identity uncertainty what is the probability that two names refer to the same individual?
- Existence uncertainty what is the probability that a hypothesized individual actually exists?

All these can be reduced to property value uncertainty (Poole, et al, 2008)

Learning

- Traditional logic is concerned with deduction deriving logical consequences of a set of axioms
- Probability and statistics are concerned with induction – deriving abstractions to generalize observations
- The data mining and machine learning communities are turning to expressive probability logics for powerful, theory-based inductive learning methods
- This class of techniques is known as Statistical Relational Learning (SRL)

Representing Parameter Learning

Diagrams produced using Netica™ software – available from http://www.norsys.com

Task: Use data from 6 1-hour observation periods to infer rate of transmission errors per hour

Posterior distribution for Λ given X

Structure and Parameter Learning

- A probabilistic theory is usually specified by defining:
 - Structure typically a graph representing dependencies
 - Parameters typically functions defined on small clusters of propositions representing strength of dependency
- We can represent both structure and parameters explicitly in our knowledge representation and expose them to reasoning
- Thus learning is integral to probability logic

Tractability

- Worst case tractability of FOL + probability is, of course, undecidable
- Efficient exact algorithms exist for restricted (but useful) classes of problems
- Efficient approximations exist for larger classes of problems
- Research is ongoing on characterizing classes of problems and the complexity of methods for those classes

Conclusion

- A theory in classical logic defines a set of possible worlds consistent with the theory
- A probabilistic logic assigns probabilities consistently to sets of possible worlds
- Expressive probability logics
 - Assign probabilities in a way that respects the domain semantics
 - Make use of knowledge that falls short of proof
 - Support evidential accrual
 - Provide built-in learning theory
- Technology for semantically aware uncertainty management is a powerful innovation

References

- R. Carnap, *Logical Foundations of Probability*, University of Chicago Press, Chicago, 1950.
- H. Gaifman, Concerning measures in First-Order calculi. Israel Journal of Mathematics, 2, 1–18, 1964.
- Laskey, K.B., MEBN: A Language for First-Order Bayesian
 Knowledge Bases, Artificial Intelligence, 172(2-3): 140-178, 2008
- B. Milch, S. Russell, First-Order probabilistic languages: Into the unknown, in: *Inductive Logic Programming*, Vol. 4455 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2007, pp. 10–24.
- D. Poole, C. Smyth, R. Sharma, Semantic science: Ontologies, data and probabilistic theories, in: *Uncertainty Reasoning for the Semantic Web I*, Vol. 5327 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2008, pp. 26–40.
- Richardson, M. and Domingos, P., Markov Logic Networks. Machine Learning, 62, 107-136, 2006.