An Ontology-based Adaptive Reporting Tool

Christian Mårtenson, Andreas Horndahl & Ziaul Kabir
Swedish Defence Research Agency (FOI)
“A group of Talibans visited my village and threatened to kill people if they didn’t get food.”
Human generated information

- Unique information
 - cognitive domain
 - indirect
- High informational value
- Human friendly “syntax”
Human generated information

- Unique information
 - cognitive domain
 - indirect
- High informational value
- Human friendly “syntax”

- Natural language not suitable for automatic exploitation
- NLP limited accuracy (complex domain, little data)
- Today: Manual tagging to get structured information
Direct input of structured information?
Input of structured information using ontologies

- Formal language is precise, prevents *unintentional* fuzzy statements
- Ontology based on a shared understanding, increases interoperability
- Formal language is compact, potentially faster input
- Accurate transfer to automatic exploitation

- *Beware: Limits expressivity (and possibly the mind)*
Tool requirements

- Intuitive to a non-expert
- Domain independent
- Output in rdf-triples
- Adapt to
 - context
 - external information needs
Related work

- Semantic query systems
 - Natural language
 - Controlled natural language
 - Graphical query tools
 - Forms
- "Knowledge elicitation scripts", e.g. Disciple-RKF
Mock-up

Structured event reporting

Basic event info

Event
Event name: Threatening #4711
Event type: Threatening
Select event type

Data & Time
Start date:
End date:

Actors

New Actor
Name:
Actor type:
Select actor type

Summary

Summary:

Actions

Publish report
Mock-up
Matching external information needs

Event → Soldier → Reporting system → Semantic statements → Match?

If entered statements match information needs, the user will be asked to answer additional questions.

Organization A → Formalised description of "information need" → Organization B
Mock-up

Structured event reporting

Basic event info

Event name: Threatening #4711
Event type: Threatening

Date & Time
Start date:
End date:

Actors

Perpetrator
Name: Taliban group
Actor type: Criminal_group
Affiliation: Taliban
Relation type: perpetrator_in_event
Group size: “100-150”
Weapon:

Summary
Summary:
Semantic broker

• Expressive ontologies often use supporting concepts which we want to hide from the user
 • E.g. in order to set attributes on a relationship

• Solutions
 • Simplified ontology + translation
 • Full ontology + GUI-rules
1. Formalize information need as SPARQL queries
2. Ask for (or prioritize) information that is missing in order to answer query

- Example:
 1. Taliban has_weapon ?x
 2. If "Taliban" is entered, ask for property has_weapon
Priority manager

- Prioritize input options based on
 - Ontology (e.g. domain and range)
 - Information needs
 - Context
 - User preferences
 - Social recommendations
Future work

• Implementation of basic functionality

• Evaluation with users
 • time to enter information,
 • correctness of resulting report
 • completeness of entered information
 • number of RFIs correctly answered

• Study other use-cases
 • Civil security, tool for surveillance personnel?
 • Tagging sensor data
Questions?

Christian Mårtenson
cmart@foi.se