COA modeling with probabilistic ontologies
Introduction
Secure area Alfa until D+3 in order to force all Redland troops to retreat to Redland borders and allow Yellowland to regain control over the area.
Secure

- May have different meanings depending on the coalition partner’s doctrine and the operational domain (maritime, airspace or land) = ambiguity
- As an effect, may be obtained through different actions
- Must be coordinated in space and time (joint planning)
Introduction

- Battle Management Language (BML) - effort to reduce the ambiguity of the command intent description

Label 15 - force all Redland troops to retreat to Redland borders and allow Yellowland to regain control over the area

nlt – no later than

Secure, Alfa, nlt D+3 in order to accomplish Label15

WHAT WHERE WHEN WHY

RESTRICTED SEMANTICS – There is no description on the relation between the effects and the actions that can contribute to reach the desired intent
Introduction

SECURE ALFA

<table>
<thead>
<tr>
<th>Maritime</th>
<th>Land</th>
<th>Airspace</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Patrol Yellowland’s north coast</td>
<td>• Attack Redland’s 2nd Brigade on ALFA</td>
<td>• Support the other component’s activities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Establish a NO-FLY zone over ALFA</td>
</tr>
</tbody>
</table>

Table 1 - Possible tasks to reach the Secure effect

Which capabilities, tasks and resources?

• **Master Air Attack Plan - MAAP**
MASTER AIR ATTACK PLAN INPUTS

- CJTF Guidance
- JFACC Strategy
- JAOP
- ROE
- Air Defense Plan
- Air Support Plan
- Weather
- Target/ETF
- EOB
- Threats/ACF
- BDA
- ALLOREQ: Allocation request
- JGAT: Joint guidance, apportionment, and targeting
- JGAT Worksheets
- Operational Context
- MAAP: Master air attack plan
- Operational Environment
- Logistics
- Communications Plan
- Bases
- Fuel/POL
- FROB
- Munitions/SCL
- UTE

DoD - Joint Publication 3-30 Command and Control for Joint Air Operations/2003

MASTER AIR ATTACK PLAN DEPICTION

- 24-Hour DCA CAP
- 10-Hour CAS Window
- Two Packages
 - Package 1 (HD/LD)
 - Belgrade/N. Serbia
 - Overlapping threats
 - Urban targets
 - Northern flow
 - Package 2 (COMAO)
 - Nis/S. Serbia
 - Isolated threats
 - Diverse targets
 - Southern flow

Tactical Level

JFACC

CAP: Combat air patrol
CAS: Close air support
COMAO: Composite air operations

DCA: Defensive counterair
HD/LD: High density/low density
Introduction
Proposed C2 Interoperability Planning Framework

Actual M&S Interoperability framework
Semantic Planning Layer
Task Probabilistic Ontology

Partial Semantic Structure of the mid-level Task Probabilistic Ontology
The main goal of this work is to generate Course of Action (COA) representation to improve planning automation

- The key elements of the approach are:
 - To model the relationship between activities (high level tasks) and effects
 - To represent the decomposition from activities to tasks (atomic)
 - To infer about the uncertainty on the production of the desired effects, based on a set of tasks, in order to reach the end state
Agenda

- Joint Operation Planning Process
- COA Modeling
- COA Development
- Conclusion and Future Work
Joint Operation Planning Process – JOPP

DoD - Joint Publication 3-30 Command and Control for Joint Air Operations/ 2010

Joint Operation Planning Process divided into six steps [Marques 2011]
Phase 1
- Acquire 60% of Air-Superiority over ALFA
- Secure Yellowland Coast
- Deploy 3rd Brigade

Phase 2
- Establish a No-Fly Zone
- Destroy at least 60% of Redland armored vehicles

Phase 3
- Deny Movement of Redland’s Forces
- Establish control over ALFA

Goal
- Secure ALFA
COA Modeling

- Phase Decomposition
COA Modeling

- Cumulative Effects Model

- Operational Level
 - Activity
 - hasTask
 - Causes
 - Effect

- Tactical Level
 - Task 1
 - Task 2
 - Task 3
 - Causes
 - Effects
 - Ef1
 - Ef2
 - Ef3

- Accumulated Effect
- Produced Effect
COA Modeling

Activity Fragment

Effect Fragment

Phase Fragment
COA Modeling

- The model also has the local probability distribution tables (LPD) for the resident nodes of interest;

<table>
<thead>
<tr>
<th>producedEffect</th>
<th>Recon</th>
<th>Attack</th>
<th>SEAD</th>
<th>Recon</th>
<th>Attack</th>
<th>SEAD</th>
<th>Recon</th>
<th>Attack</th>
<th>SEAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>.70</td>
<td>.60</td>
<td>.80</td>
<td>.60</td>
<td>.50</td>
<td>.55</td>
<td>.55</td>
<td>.20</td>
<td>.40</td>
</tr>
<tr>
<td>Medium</td>
<td>.20</td>
<td>.20</td>
<td>.10</td>
<td>.25</td>
<td>.30</td>
<td>.20</td>
<td>.30</td>
<td>.30</td>
<td>.35</td>
</tr>
<tr>
<td>Low</td>
<td>.05</td>
<td>.15</td>
<td>.05</td>
<td>.10</td>
<td>.15</td>
<td>.15</td>
<td>.10</td>
<td>.35</td>
<td>.20</td>
</tr>
<tr>
<td>None</td>
<td>.05</td>
<td>.05</td>
<td>.05</td>
<td>.05</td>
<td>.05</td>
<td>.10</td>
<td>.05</td>
<td>.15</td>
<td>.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ObjType</th>
<th>Recon</th>
<th>Attack</th>
<th>SEAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft</td>
<td>.05</td>
<td>.05</td>
<td>.05</td>
</tr>
<tr>
<td>Medium</td>
<td>.05</td>
<td>.05</td>
<td>.05</td>
</tr>
<tr>
<td>Hard</td>
<td>.05</td>
<td>.15</td>
<td>.05</td>
</tr>
</tbody>
</table>

The producedEffect’s LPD
Phase 1 – Activity 1

- Acquire at least 60% of Air Superiority

Table 1 – Tasks definition

<table>
<thead>
<tr>
<th>Phase - Air Superiority</th>
<th>Outcome - Acquire at least 60% of Air Superiority</th>
<th>Effect</th>
<th>Activity</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Destroy AAA</td>
<td>SEAD</td>
<td>SEAD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Destroy Radar</td>
<td>Attack Radar</td>
<td>Attack DMPI01 and DMPI02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Destroy C2 Comm</td>
<td>Attack C2 Comm</td>
<td>Attack DMPI03 and DMPI04</td>
</tr>
</tbody>
</table>
COA Ontology

[Diagram of COA Ontology with nodes and edges representing tasks, outcomes, phases, and effects.]
After all instances and LPDs are included in the probabilistic ontology, a query can be posted to the model to assess a specific outcome;

A Specific Situation Bayesian Network—SSBN is the result of a query on the planned outcome of the AirSuperiority phase \([\text{hasAccomplishedPhaseGoal} (\text{Phase1_AirSuperiority_COA_02A})]\);

In the resulting SSBN, there are planned effects accumulated from Time \(T_0\) and \(T_1\) for the activity \(\text{SEAD_AAA_01Alfa}\) to object \(\text{Target_AAA_01Alfa}\) and the activity \(\text{Attack_C2Comm_03Bravo}\) over object \(\text{Target_C2Comm_03Bravo}\).
Phase Instance

Activity Instance1

Activity Instance2

Activity Instance3

Activity Instance4

Activity Instance5

Effect Instance1

Effect Instance2

Effect Instance3

Query hasAccomplishedPhaseGoal

Phase Instance
1st Query to support Phase Outcome inference
Task Inference

<table>
<thead>
<tr>
<th>GenerateTaskList</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A knowledge base (kb), a Phase and it’s defined threshold</td>
</tr>
<tr>
<td>Output: A list of tasks that contribute with the desired effect or NIL</td>
</tr>
</tbody>
</table>

1. Create an empty list of tasks called R;
2. $Q_1 = \text{Query(Phase)}$;
3. If Phase’s threshold was already reached, Return NIL;
4. Else get the activities TaskList from Phase; ## previous planned activities for the phase
5. While not (EMPTY TaskList){
 6. $A = \text{TOP(TaskList)}$;
 7. **Generate a NewActivity based on A;** ## external function
 8. $Q_2 = \text{Query(Phase)}$;
 9. If ($Q_2 > Q_1$) R receives A;
 10. If ($Q_2 \geq$ threshold) Return R;
11. }EndWhile
12. Return R;
2nd Query to support Phase Outcome inference after generating a new task
Conclusion

- The present research is a work in progress
- At this moment we have achieved:
 - An Activity-Effect relationship description with uncertainty
 - A reasoning model to support task analysis
- Our goal is to improve planning automation through
Future Work

- Improve the effects model showing also the secondary effects
- To model behavioral effects
- Improve reasoning with Decision Nodes and Utility Functions in the resulted SSBN
- Planning system integration
- Verification through simulations
COA modeling with probabilistic ontologies

Henrique Costa Marques – ITA
José Maria Parente de Oliveira – ITA
Paulo Cesar Guerreiro da Costa – GMU

hmarques@ita.br
parente@ita.br
pcosta@c4i.gmu.edu
Planning Process - Interoperability

- COA Determination
 - Decision Support Systems – C^2 Systems
 - Planning system as a module
- Different Players may have different planning systems with different problem-solving methods
- How to describe COA to improve planning interoperability?
M&S Interoperability Framework
Probabilities described through PR-OWL, a probabilistic OWL language [Costa 2005, Carvalho 2011]

PR-OWL implements Multi-Entity Bayesian Networks (MEBN) inference [Laskey 2008]

Describes the relations and properties as a deterministic ontology, but has the ability to also describe a Situation Specific Bayesian Network (SSBN) to support reasoning under uncertainty
COA Probabilistic Ontology
Activity Probabilistic Description

- Cumulative Effects Model in PR-OWL

![Diagram showing a model of cumulative effects in PR-OWL with nodes and edges representing relationships such as `isA`, `isActivityToObject`, `isReportedEffect`, `Subject`, `Task`, `ObjType`, `producedEffect`, and `ActivityReport`. The diagram also includes a legend for context and resident nodes.]
Activities Reasoning

- Pull BML/MSDL high level tasks
- Through the support of the probabilistic task ontology, identify activities to be pruned by analyst criteria (defined threshold for each phase and activity)
- Generate SSBN to support the activities inference
- Export a list of the activities to be described within the Planning Context Definition module
process to establish the problem context to be submitted to the domain-independent planning system

- Planning Domain definition – identification of the methods that decomposes the activities and also the operators
- Planning Problem definition – description of the tasks to be decomposed and the initial state declared on the MSDL message
- PDDL files generation