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Abstract—This position paper explores a means of improving 

cybersecurity using Big Data technologies augmented by 

ontology for preventing or reducing losses from cyber attacks. 

Because of the priority of this threat to national security, it is 

necessary to attain results far superior to those found in modern-

day security operations centers (SOCs). Focus is on the potential 

application of ontology engineering to this end. Issues and 

potential next steps are discussed.  
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I. INTRODUCTION  

The last few years have seen tremendous increases in the 

amount of data being generated and used to provide 

capabilities never before possible. “Big Data” refers to the new 

engineering paradigm that scales data systems horizontally to 

use a collection of distributed resources, rather than only the 

earlier vertical scaling that brought faster processors and more 

data storage into a single monolithic data platform. Big Data 

technologies have the potential to revolutionize our capabilities 

to handle the large datasets generated in any cyber data 

analytics. The challenge, however, is not just in handling the 

large volumes and high data generation rate, but in leveraging 

all available data sources to provide better and faster analytics 

for attack detection and response. In this paper, we will discuss 

Big Data analytics, metadata, and semantics for data 

integration, and applications to cybersecurity and cyber data 

management. 

II. BIG DATA 

Big Data has several defining characteristics, including 

volume, variety (of data types and domains-of-origin), and the 

data flow characteristics of velocity (rate) and variability 

(change in rate) in which the data is generated and collected.  

 

Traditional data systems collect data and curate it into 

information stored in a data warehouse, with a schema tuned 

for the specific analytics for which the data warehouse was 

built. Velocity refers to a characteristic that has been previously 

referred to as streaming data. The log data from cell phones, 

for example, flows rapidly into systems, and alerting and 

analytics are done on the fly before the curation and routing of 

data or aggregated information into persistent storage. In a Big 

Data architecture, this implies the addition of application 

servers to handle the load. Variability refers to changes in the 

data flow’s velocity, which for cost-effectiveness leads to the 

automated spawning of additional processors in cloud systems  

to handle the load as it increases, and release the resources as 

the load diminishes. Volume is the dataset characteristic most 

identified with Big Data. The engineering revolution began due 

to the massive datasets from web and system logs. The 

implication has been the storage of the data in its raw format, 

onto distributed resources, with the curation and imposition of 

a schema only when the data is read.  

 

 Big Data Analytics. Much of the development of Big 

Data engineering is a result of the need to analyze massive 

web log data. Massive web logs were first filtered by page for 

aggregate page counts, to determine the popularity of pages. 

Then the pages were analyzed for sessions (spawning the now 

massive “cookie” industry to make this simpler). “Sessions” 

are the sequence of activities that describe a customer’s 

interaction with the site at a “single-setting,” with the analyst 

describing what time-window is considered a session.  The 

next step in analytics capability came from the realization that 

these sessions could be abstracted into patterns rather than 

being treated as just the literal collection of pages. With this 

step, traversal patterns helped site designers see the 

efficiencies in their link structure. Furthermore, these usage 

patterns could in some cases be attached to a customer account 

record. With this step, the site could be tuned to benefit the 

most valuable customers, with separate paths being designed 

for the casual visitor to browse, leaving the easy efficient 

handling for loyal customers. This pattern-oriented analysis 

applies to the cyber domain, in analyzing logs from a server. 

 

The last 15 years have seen the extension of a number of 

analytics techniques to leverage the horizontal Big Data 

scaling paradigm to address both log and linked-node data 

found in social sites. The cyber community can leverage web 

log and Social Network Analysis to use the massive amounts 

of data to determine session patterns and the appropriateness 

of activity between resources. The challenge is that cyber must 

also deal with a richer set of attributes for the resources and 

their expected/allowed interconnections, which adds in a 

variety of other contextual datasets into the analysis. 

 

Variety. Traditional systems handled the variety of data 

through a laborious integration process to standardize 

terminology, normalize into relational tables, choose indexes, 

and store into a data warehouse that is tuned for the specific 

analytics that are needed. This is an inflexible process that 

does not easily accommodate new data sources, changes into 

underlying data feeds, or new analytical requirements. 

 

For web log analysis, this extension to customer session 

analytics only required the assignment of a customer or visitor 
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ID to the session, allowing integration with a purchasing 

history. In the cyber analytics case, the integration point is not 

so simple. The integration of packet data, with server log data, 

with port-to-port connectivity data, with server type data, with 

network router settings, and so forth, provides a more complex 

use case, needing a more sophisticated way to integrate such a 

variety of data, some of which carries a number of additional 

attributes that are needed. 

 

Recently, variety datasets have been addressed through 

mashups that dynamically integrated a couple of datasets from 

multiple domains to provide new business capabilities. Early 

mashups demonstrated this value, for example, in the 

integration of crime data with real estate listings; a valuable 

analysis that was not possible before the availability of open 

datasets. There is a limitation to such mashups because of the 

integration of a limited number of datasets, with the integration 

variables being manually selected.  This type of manual 

integration is insufficient for analytics across different large 

volume datasets with complex inter-relationships. 

 

Variety is the Big Data attribute that will enable more 

sophisticated cyber analytics. The requirement is for an 

automated mechanism to integrate multiple highly diverse 

datasets in an automated and scalable way. This is best 

achieved through a controlled metadata. 

 

III. METADATA 

The executive branch has been pushing an open data 

initiative to move the federal government into being a data 

steward. The goal in releasing the data is to better serve the 

public and promote economic growth through the reuse of this 

data. The difficulty in using this data arises from the lack of the 

metadata descriptions. Data reuse requires as much information 

as possible on the provenance of data; the full history of the 

methods used for collection, curation, and analysis. Proper 

metadata increases the chances that datasets are re-purposed 

correctly—leading to analytical conclusions that are less likely 

to be flawed. 

 

Two mechanisms are used for dataset integration in a 

relational model. In the relational model, lookup tables are 

established to translate to a common vocabulary for views, and 

a one-to-one correspondence is used to create keys between 

tables. In a NoSQL environment, joins are not possible so table 

lookups and or keys cannot be used for data integration.  The 

connection of data across datasets must reside in the query 

logic and must rely on information external to the datasets. 

This metadata logic must be used to select the relevant data for 

later integration and analysis, implying the need for both 

standard representation and additional attributes to achieve the 

automated data retrieval. 

 

A second approach is used to speed the data integration 

process for manual mashups of diverse datasets. Often XML 

wrappers are used to encapsulate the data elements, with the 

nomenclature for each dataset provided in the wrapper, based 

on user interpretation of the data elements. This approach 

allows rapid integration of data through the wrappers (as 

opposed to a lengthy data warehouse integration), but it is not 

an approach that can be automated, nor can it be used for large 

volume datasets that cannot be copied due to their volume. 

Even in a mashup, wrapper terms used in the metadata are 

themselves subject to interpretation, making reuse of data 

elements difficult.   

 

Without metadata referenced to well-understood standard 

terminology applicable across domains, the diverse datasets 

cannot be integrated automatically. In addition, the integrating 

elements must be applied outside the big data storage, implying 

that the integration logic must reside in the metadata layer. 

 

IV. SEMANTIC TECHNOLOGY 

Semantic technologies are crucial for the future handling of 

big datasets across multiple domains. While we have methods 

for unique concept identification arising through the Semantic 

Web, these technologies have not made inroads into traditional 

data management systems. Traditionally, the ETL process has 

been used to enforce standard terminology across datasets, with 

foreign keys to external tables for the related information. This 

is not a scalable solution, since the introduction of a new data 

source requires the careful construction of foreign keys to each 

other dataset in the database. This lack of extensibility to add in 

additional sources highlights the limitations of horizontal 

scalability in current approaches. In addition, there are 

limitations on the continued expansion in large data 

warehouses, highlighting their inability to continue to scale 

vertically.  

 

Semantic technologies have not yet made inroads into Big 

Data systems. Big datasets that consist of volume tend to be 

monolithic with no integration across datasets. The data is 

typically stored in its raw state (as generated), and no joins 

were allowed in the initial Big Data engineering. Given this, 

most Big Data analytics approaches apply to single datasets. 

 

For solutions addressing the integration of variety datasets, 

the ability to integrate the datasets with uniquely defining 

semantic technology is a fundamental requirement. Two 

overarching requirements need to be addressed to use ontology 

for the integration of Big Data: constructing the ontology and 

using the ontology to integrate big datasets. 

 

Ontology scaling. The standard method for data access 

through an ontology is to ingest the data into an ontological 

database, where the data elements are encoded along with their 

extant relationships. This does not work in a Big Data scenario, 

since ontological databases do not have the horizontal 

scalability needed to handle data at high volume, velocity, or 

diversity.  Further exacerbating the problem is that some of the 

data needing to be integrated are not owned by the analytical 

organization and cannot be ingested, but only accessed through 

query subsets. 
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 Separate ontology for metadata. The implementation of 

an integrating ontology would consequently need to reside in 

the metadata for browsing and querying. While this metadata 

could be browsed manually, the real value comes if it can be 

actionable; such that selections over the metadata ontology 

would automatically construct queries to the Big Data 

repository.  A number of ontologies relative to the cyber 

domain already exist, encompassing resources, attack event 

ontologies, and so forth. The key is to incorporate the 

appropriate elements and their relationships needed to 

describe the elements in the desired datasets. Our intent is not 

to recreate a cyber ontology from scratch, but to leverage 

those that exist to develop a first order ontology specific to the 

integration of the relevant cyber datasets. Focusing on first 

order logic will enable the ontology to be actionable to 

dynamic data integration.  

 

In order to serve as the facilitator for data integration for 

automated integration, this first order ontology would need to 

contain elements such as: data element definitions, dataset 

location, data producing resource characteristics, and resource 

connectivity. 

 

For analytics, additional mid-level ontologies would be 

needed to provide reasoning over the data, such as time and 

location. Domain-specific ontology elements would include, 

for example, resource attributes by resource type, translations 

such as Internet protocol (IP) to location, and derived attack 

pattern components. 

 

The key to the use of a semantic representation for the 

metadata is separating the semantic metadata from the data 

storage. In order to leverage the scalability and speed of high-

volume NoSQL solutions, the ontology will need to reside in 

its own scalable environment. Data exploration would require 

a mechanism to browse the metadata within the ontology, with 

a seamless transfer mechanism to flow down into the data.  

 

Probabilistic Challenges. One significant challenge in the 

use of ontology for automated data analytics across datasets 

resides in the need for probabilistic reasoning. Typically in 

ontology representations, triplets are considered “facts,” 

implying full confidence in the data elements being described. 

In the real world, such a luxury is typically non-existent. 

Resources will continually be updated, and there will be 

latency before the new configurations are updated in the 

ontology. Attack chains will have multiple possible paths with 

probabilistic representations of each link type.  Activity counts 

must be evaluated with a statistical significance test to 

determine if an activity is truly of concern. Such counts will 

have variations relative to time of day and day of week. Using 

an ontology for such probabilistic analytics will require the 

ability to analyze activity under some uncertainty. Much work 

has been done on probabilistic ontology, like MEBN, which 

inserts Bayes’ theorem in ontology nodes [1]. 

 

V.  APPLICATION TO CYBERSECURITY 

Practical application to countering cyber attack is 

achievable in the near-term. The following questions can be 

answered with properly implemented Big Data technologies 

that span the variety of datasets: What data is available on 

malware X attacks globally? How many machines did an 

event land on? What ports were leveraged? What users were 

affected? What machines were compromised? What was 

leaked? Was sensitive information lost? Who did it? Was it an 

insider or outsider? More difficult questions for the future 

would be: What is the composite activity globally of this 

attacker that penetration tested (pentested) my perimeter? 

What are all the locations globally of <malware name> 

attacks? What should I expect from this attacker within the 

next hour? Next week? Next month? (Based-on the historical 

data on this attacker.) What unsafe actions are my users doing, 

rank ordered by risk significance? What suspicious activity 

occurred today? Where is the greatest risk within the 

enterprise? It would also be useful to tabulate statistics on 

vulnerabilities versus attacks, and visualize the results. 

 

The latter “future set” of questions requires more research 

and development in topics like machine learning and 

reasoning, and is well beyond this paper’s scope.  For 

example, can ontology as proposed in this paper help us 

reason about risk based on the topology of devices and 

controls? Theoretically, this is deterministic and machines 

should be able to do better than man. Our intent is to model 

perimeter security of a large, enterprise network and collect 

real-time data, reason about risk in real-time based on the 

topology of devices and controls, and respond to threats in 

attempt to prevent loss. Given the appropriate set of data and 

generation of a set of reasonable hypotheses, can we use Big 

Data to do evidence collection to support or refute those 

security risk and threat hypotheses, in time to prevent loss?   

 

 Progress-to-Date. As a first step in preparing to 

instantiate an ontology, we have been mindful of what 

hundreds of organizations do in the current cybersecurity 

management process in a global networked enterprise.  

Description of this workflow is beyond this paper’s scope. 

System awareness currently resides in the minds of hundreds 

of professionals who track threats and malware, maintain the 

security devices like firewalls and the configurations and 

patches of thousands of network devices, monitor events and 

log files, create tickets when an anomaly is observed, and 

perform remedial actions such as  Incident Response; 

Configuration Management; Vulnerability and Patch 

Management; Firewall, Intrusion Detection and Prevention; 

Deep Packet Inspection and Cyber Threat Assessment; 

Security Architecture and Design; and so forth. 

 

We propose to elicit all knowledge necessary assessment, 

decision, planning, and response into this ontology.  At first 

glance, this may appear daunting, but based on the successes 

with ontology engineering in recent years, and the high stakes, 
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we believe this not only practical, but necessary, to better 

understand how to solve this national priority problem. 

 

Cyber-security management has the characteristics of a 

successful knowledge elicitation and ontology engineering 

endeavor.  The information is in digital form, and cyber-

security processes are repetitive—meaning that the same 

indications of an attack are well documented and observed in 

typical network operations routinely and the remedial steps are 

documented and used routinely. This is not to say the 

cybersecurity experts are not highly knowledgeable and 

skilled—just the opposite. This knowledge can be coded and 

reused in the parts the machine does best; man should 

continue to do the parts that it does better than machines. With 

this expectation, we will meet the goal stated up front of 

flipping the current situation to one where a network’s defense 

is optimized and efficient, lowering cost of defense, and 

making it very hard and expensive for the attacker. 

 

 Cyber Ontology for Countering Attacks.  The top levels 

are illustrated in Figures 1 and 2. 

.  
Figure 1. Upper Level and Lower Level Infrastructure Ontology. 

 
Figure 2. Lower Level Ontology for Attack and Defense. 

 

Our goal is a proof-of-concept prototype of the entire 

process, but only for a few appropriate types of attacks and 

respective plans as defined by a fairly rigorous test set. Big 

Data elements for proof-of-concept have been partially 

selected. 

 
Ontology engineering tools are being evaluated for “most 

suitable” for implementing this ontology for use in the system 

as previously described.  A trade study will need to be 

conducted, for tools that can be selected for implantation of a 

production system capable of meeting the aforementioned 

objectives in a large, global enterprise network.  For the 

purpose of demonstrating the concept we selected an ontology 

engineering tool from highfleet.com that reportedly provides 

an implementation of first order logic that is decidable and 

tractable (by simple programming constraint). It is a tool that 

one of the authors has used in the past. Results here are 

positive from the little done to-date; we cannot do an 

assessment until the ontology is populated. There are other 

ontology engineering tools, for example the description logic 

Protégé ontology editor. We have not made a decision; 

eventually we will need to identify appropriate metrics and 

conduct assessments to determine what would be needed for 

production grade deployment to address this problem space   

 

Due to page limit constraints, it is impossible to discuss 

all aspects of the cyber ontology development, but a few 

aspects need to be mentioned. For example, there are many 

good resources for specifying and instantiations these 

ontologies to a level useful in cyber, most notable are efforts 

by MITRE [2]. Research issues remain unanswered and they 

can be categorized into big data and analytics, ontology and 

probabilistic reasoning, decision making and design and 

architecture. Cybersecurity is a hard problem and it is doubtful 

that the approach taken in this paper, or any other, will be a 

complete solution. Furthermore, the cyber attack 

sophistication is advancing rapidly which compounds this 

problem significantly [3].   

 

VI. FUTURE STEPS 

We are in the planning phase for continued research and 

development, beginning with the Big Data analytics necessary 

to more fully identify, understand, and respond to cyber 

attacks. In parallel, we would like to develop a proof-of-

concept prototype to test how well this ontology and Big Data 

integration would work in practice in a large enterprised 

network with high traffic and large number of cyber attacks. 

The key to the success of this prototype will be to focus on 

one narrow aspect of cyber attack defense; if one is 

implemented and demonstrated, it can be used to extrapolate 

the resources needed for development and implementation in 

large production environments.  
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