
Hierarchical Decision Making
Matthew J. Lewis

Data Exploitation Systems
Michigan Aerospace Corporation

Ann Arbor, MI
mlewis@michaero.com

Abstract—Decision making must be made within an
appropriate context; we contend that such context is best
represented by a hierarchy of states. The lowest levels of this
hierarchy represent the observed raw data, or specific low-level
behaviors and decisions. As we ascend the hierarchy, the states
become increasingly abstract, representing higher order tactics,
strategies, and over-arching mission goals.

By representing the hierarchy using probabilistic graphical
models, we can readily learn the structure and parameters that
define a user’s behavior by observing his activities over time—
what data they use, how it is visualized, and what decisions are
made. Once learned, the resulting mathematical models may be
combined with the techniques of reinforcement learning to
predict behavior and anticipate the needs of the user, delivering
appropriate data, visualizations, and recommending optimal
actions.

Keywords—decision making; hierarchical hidden Markov
models; reinforcement learning.

I. INTRODUCTION
Human operators, particularly in the context of military

operations, must quickly make critical decisions. Although
these operators have access to unprecedented volumes of
diverse data sources involving media reports, financial
information, imagery, signals intelligence, and human
intelligence, making decisions based on such data is
confounded by many factors, including: 1) Limited human and
computational resources; 2) difficulty synthesizing a coherent
picture from volumes of manifold and (often) irrelevant data;
3) an inability to derive meaning from or detect structure in
high dimensional data; and, 4) the randomness and uncertainty
intrinsic to the real world. When a human operator is making a
decision, much of this data is irrelevant and, worse, confusing.

To reduce the cognitive load of human decision makers and
improve the quality of the decisions they make, we can develop
frameworks—algorithms, APIs, and user interfaces—that
detect what data is relevant and how it should be presented in a
manner that is particular to the decision context. For our
purposes here, a decision context specifies: 1) the goal, task, or
mission relevant to our decision; 2) the reason the task is
important (i.e., a global perspective); 3) any constraints and
utilities associated with the decision; 4) previous decisions that
were made, as well as likely future ones; and, importantly, 5)
the set of candidate decisions available to the decision maker.

In fact, human operators may not explicitly conceive of this
decision context, but it nevertheless serves as a useful set of
latent variables, which help us intelligently aggregate relevant

data and determine how to best present it to the human user.
We may use machine learning techniques to identify and
classify decision contexts, as well as predict which data, in
what formats and with what visual representations are most
useful.

In this paper we advocate an approach to building flexible
frameworks that identify a decision context that may help
anticipate the types of data the user will find useful, as well as
how the data should be represented and visualized. As users
interact with the framework to make decisions, entering search
terms, selecting data, interacting with tables and plots, and
ultimately making decisions, the framework learns and adapts,
improving its predictive capabilities and honing its notion of
what constitutes a decision context.

II. DECISION CONTEXT

A. The Importance of a Decision Context
How can we learn the decision context for a particular task

or goal? We have, at the lowest level, the measured input
associated with how the user is using a system to help make a
decision. This can be much more than the keywords associated
with a database search. It could include what elements of an
interface the user clicks on, heat maps of cursor positions, how
long a given data source is investigated, what data elements a
user expands—even, if available via camera interfaces, what
information the operator is actually looking at, and for how
long. The details we record about how an operator interacts
with a user interface (UI)—or, even better, how an entire
population of operators interacts with a UI—will yield
valuable, predictive insight into what data is useful and what
data is quickly discarded by the operator, with respect to the
estimated decision context. This information can be gleaned
from nearly any system by using external monitoring software
packages.

B. Decision Context as a Hierarchy
Making the leap from crude interaction measurements to

understanding the intent of the human operator and the
decisions he is trying to make is difficult—indeed, a problem at
the core of machine learning and artificial intelligence.

One approach to attacking this problem is to understand the
decision context as a hierarchy, wherein the lowest layers of
the hierarchy represent the raw input signals—the
measurements of operator interaction with the UI, and the
structure and content of requested data; as we move up in the
hierarchy, inputs from the lower layers are mapped to
increasingly more abstract ideas—operator intent, operator

confusion, mission goal, etc., which together form the decision
context. One tool for efficiently representing such hierarchies
is the hierarchical hidden Markov model (HHMM) [1].

C. An Example
To take a concrete example, imagine driving a car. At the

very lowest level, a driver is taking in visual and auditory
information about obstacles and other cars on the road, and
making numerous low-level decisions—press the gas, press
the brake, turn left, and so forth. But these decisions are always
being made in the context of a higher-order goal—say,
navigating to the grocery store. And that goal, in turn, is made
in the context of a yet higher order goal—needing to eat.
Decisions are made at each level in the hierarchy, and
influence the decisions made at the other levels.

Consider Fig. 1, which illustrates a portion of a highly
simplified hierarchical hidden Markov model. Each blue node
in the network represents a state of the system. These states are
arranged into a hierarchy of levels. Suppose you are hungry, so
that at the highest level in this hierarchy you are in the eat
state. There is some probability you will transition to another
state at this level — the sleep state, for example. However,
more likely, because of your hunger, you will transition to a
lower level in the hierarchy, perhaps to the node that represents
the go to the grocery store state. This in turn transitions to yet a
lower level, to represent increasingly specific sequences of
behavior — leave the house followed by drive to the store.
When behavior at one level of the hierarchy is completed
(which happens when one transitions to a black node), control
is returned to one level higher in the hierarchy, where it left off.
Note that, in general, states transition at lower levels change
much more quickly than they do at higher levels: things are
changing quickly as we drive down the street, stopping at stop
signs, taking right turns, etc. But all the while we are still in the
eat state—the higher order context for our behaviors has not
changed.

Fig 1: An example of a hierarchical hidden Markov network.

Learning the structure of such a network, as well as the
probabilities associated with transitions between states and
levels, can be done efficiently and in an unsupervised manner
using the mathematics of probabilistic graphical models [2, 3].
We have implemented these techniques in the context of
autonomous vehicle control, predictive analytics, and
electronic warfare.

Using these mathematical models, we may take low level
behavioral inputs and infer the higher order goals that are likely
driving this behavior. Conversely, given a higher order goal,
we can estimate the behaviors that will likely be used in the
context of that goal. This information can be used to optimally
configure a user interface, retrieve relevant data, and otherwise
support operator decision making. We describe a way to
achieve this optimization below.

III. LEARNING BY INTERACTING WITH THE ENVIRONMENT

A. From States to Actions
We have argued that describing decision context as a

hierarchy provides a rich way to describe operator behavior. In
a sense, it provides a flexible way of modeling the state of the
operator — why an operator is doing something, how he is
trying to accomplish it, at a strategic level, and what resources
he likely needs to support the effort. This representation can
determine, at each time step, what the most likely decision an
operator is likely to make, based on past behavior. But this
representation alone does not provide a mechansim for learning
— at a given timestep, the best possible decision.

Consider again the car driving example: if we have an
HHMM running, a few observations (our operator is in the car,
he is driving toward the grocery store) will quickly establish
the decision context (the operator needs to eat), and can predict
that he will turn left at the upcoming intersection, because he
has done so previously, and because it ultimately leads to the
grocery store. But it predicts or suggests this decision only
because of what has been observed in the past, not because
turning left happens to be the fastest way to reach the grocery
store. In order to optimize the decision making process, we
harness another piece of mathematical technology, known as
Reinforcement Learning.

B. Reinforcement Learning
Reinforcement Learning (RL) is a machine learning

technique inspired by behavioral psychology, developed to
emulate the manner in which humans learn via experience [4].
RL is concerned with teaching an agent how to interact with an
environment in order to maximize a cumulative reward. RL has
been successfully applied to problems across many domains,
including industrial planning, autonomous vehicle control,
pattern recognition, dynamic channel allocation in the cellular
industry, and even the game of chess.

At each time step 𝑡 of an RL algorithm, the agent finds
itself in a state, 𝑠! ∈ 𝑆. When in this state, it has available a
number of available actions, or decisions, 𝑎! . It selects an
action according to a policy, 𝜋(𝑠, 𝑎) , which records the
probability of selecting action 𝑎 given the agent is in state 𝑠,
i.e., 𝜋 𝑠, 𝑎 = 𝑃(𝑎|𝑠) . Because of this action, the agent
transitions to a new state 𝑠!!! and receives a scalar reward
𝑟!!!.

The reward function is a crucial component. It may be a
complex, time dependent function of the state of the agent and
his environment; it is used to encode the goals of a decision
making task—that is, by optimizing this function, we achieve
the planning goal. Surprisingly complex behavior can emerge
from the use of even simple scalar reward functions. In this

instance, the reward function could be the utility of the final
decision, the speed at which the decision is made, or a
combination of these and other measures.

But—and this is critical—the goal of RL is not to maximize
the reward received at the very next time step, but rather the
total cumulative reward over all time, which we call the return:

𝑅! = 𝑟! + 𝛾𝑟!!! + 𝛾!𝑟!!! +⋯ (1)

The scalar 𝛾 ∈ [0,1] determines the importance of future
rewards relative to near-term rewards. If 𝛾 = 1, distant future
rewards are as important as near term rewards. For 0 < 𝛾 < 1,
we refer to 𝑅! as the discounted return.

The advantage of this approach is that the reinforcement
learning agents are not required to act to maximize short-term
gains, but rather learn to act in complex ways to achieve
objectives, even if they must make occasionally suboptimal
decisions.

An object of fundamental interest in RL is the action-value
function, which we denote by 𝑄(𝑠, 𝑎) . The action-value
function records the expected discounted return:

𝑄! 𝑠, 𝑎 = 𝐸{𝑅!|𝑠! = 𝑠, 𝑎! = 𝑎} (2)

The superscript 𝜋 indicates that the action-value function is
relative to the policy 𝜋. It tells us the expected value of being
in state 𝑠 and taking action 𝑎. The goal of an RL agent is to
learn this function by interacting with its environment. Once
this function has been learned, determining an optimal policy,
𝜋, is straightforward: given we are in state 𝑠, we select the
action 𝑎 so that we maximize the expected value—that is, we
select the optimal action 𝑎∗ = max! 𝑄(𝑠, 𝑎). In fact, we do not
always select the optimal action, but sometimes (with
probability 𝛽) select a suboptimal action. In this way, we
manage to avoid the local minima in our reward functions, and
may more rapidly adapt as our environment evolves in time.

We learn the 𝑄 function iteratively. We begin with an
arbitrarily initialized function, 𝑄(𝑠, 𝑎). Starting at time 𝑡, in
state 𝑠!, we select an action 𝑎 using a policy derived from the
function 𝑄—i.e., we select the action with the highest expected
value. Because of the action, we find ourselves in state 𝑠!!!,
and receive reward 𝑟!!!. We update the action value function
as follows by replacing the value of 𝑄 𝑠! , 𝑎! with,

𝑄 𝑠! , 𝑎! + 𝛼 𝑟!!! + 𝛾max! 𝑄 𝑠!!!, 𝑎 − 𝑄(𝑠! , 𝑎!) (3)

The scalar 𝛼 ∈ [0,1] is a learning rate, which specifies how
quickly the system adapts.

After the update, we select another action, and the cycle
continues. We can demonstrate (via practical applications and
formal mathematical proofs) that this iterative procedure
converges to the correct value for the action-value function 𝑄.
The policy 𝜋 is implicit in the action-value function, as
emphasized above: when we are in state 𝑠 we select 𝑎∗ =
max! 𝑄(𝑠, 𝑎).

Importantly, the RL algorithm does not stop learning after
this convergence, for the simple reason that the environment
may be changing, and our the agent’s behavior may need to
adapt accordingly. This occurs naturally in the context of the

RL algorithms because there is some nonzero probability (𝛽, as
defined above) that we will select a non-optimal action. This
ensures that we are trying new things, and although we may
not always be making the optimal decision, we can avoid
making decidedly poor decisions because our environment has
changed from beneath us — there is always, of course, a
tradeoff between achieving optimal behavior and responding
quickly to a changing environment (i.e., stability vs.
maneuverability), but with these methods we can parameterize
and quantify the tradeoff.

C. Bringing the Pieces Together
We have discussed two distinct pieces of mathematical

equipment that may be used to deal with hierarchical decision
making. For the first piece, an HHMM is used to learn the
decision contexts relevant to a problem. These decision contexs
define a set of states. Given a state, and a set of actions that the
operator (or the computer) may take, our second piece of
technology, Reinforcement Learning, sets out to learn what
decisions will lead to the best outcomes, with respect to a set of
reward functions.

The fact that these two pieces share a common language—
they understand they operator’s state and the actions he may
take, indicate they may work together effectively. Given the
HHMM predicts we’re in a particular state, the RL algorithms
recommend an action. As a results we transition to a new state,
which is estimated by the HHMM, another action is
recommended, and the cycle repeats. A human operator may
either execute the decision recommended by the RL
algorithms, or select another action—and the system learns
from the resulting state in either case.

To continue the analogy with the car: As the human
operator approaches an intersection, the RL algorithm may
understand that the user is in an eat state, attempting to go to
the grocery store. Typically, at this point, according to the
HHMM, the user turns left, but the RL algorithm may
recommend right. As a result, the user arrives at the grocery
store four minutes faster than usual. This reinforces the RL
algorithm’s decision to recommend that action, and in the
future, it will preferentially recommend it. If at some point
something, say construction, renders that driving route
unmanageable, the RL algorithms will adapt accordingly, and
perhaps again recommend taking a left hand turn at the
intersection, instead.

IV. CONCLUSIONS
Decision making must be made within the appropriate

context, and we contend that context is best represented by a
hierarchy of states. The lowest levels of this hierarchy
represent the observed raw data, or specific low-level
behaviors and decisions. As we ascend the hierarchy, the states
become increasingly abstract, representing higher order tactics,
strategies, and over-arching mission goals.

By representing this hierarchy using probabilistic graphical
models, we can readily learn the structure and parameters of a
user’s behavior by simply observing their activities over
time—what data they use, what plots they make and use, etc.
Once learned, the resulting mathematical models may be used
to intelligently predict behavior, anticipate the needs of the

user, and deliver the appropriate data, visualizations, and other
resources before the user even knows he wants it.

Furthermore, given this hierarchical representation, we can
use the mathematics of reinforcement learning to help the user
make the best possible decision (or decisions) with respect to
the specified reward functions.

A. Moving Forward
Although Reinforcement Learning methods have been

successfully integrated with probabilistic graphical networks,
which allow us to build autonomous decision making systems
that learn and adapt from experience, and though these
technologies have been applied to a number of disparate fields,
including autonomous vehicle control, and electronic warfare,
more research needs to be done to develop these into a general
framework.

In order to produce a flexible framework, we must create a
method for easily defining reward functions in terms of the

ultimate decision goals of the system, as well as methods for
labeling the states of the decision context hierarchy. In
addition, for specific uses, we must develop a consistent
method for ingesting data so that it may be readily used by
these algorithms.

These and other challenges represent future research efforts
in this area.

REFERENCES
[1] S. Fine, Y. Singer and N. Tishby, "The Hierarchical Hidden Markov

Model: Analysis and Applications", Machine Learning, vol. 32, p. 41–
62, 1998

[2] K. Murphy and M. Paskin. "Linear Time Inference in Hierarchical
HMMs", NIPS-01 (Neural Info. Proc. Systems).

[3] K. Murphy, "Dynamic Bayesian Networks: Representation, Inference
and Learning", UC Berkeley, Computer Science Division, July 2002.

[4] R. Sutton & A. Barto, “Reinforcement Learning: An Introduction”, MIT
Press, Cambridge, MA, 1998.

