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Abstract—Decision making must be made within an 
appropriate context; we contend that such context is best 
represented by a hierarchy of states. The lowest levels of this 
hierarchy represent the observed raw data, or specific low-level 
behaviors and decisions. As we ascend the hierarchy, the states 
become increasingly abstract, representing higher order tactics, 
strategies, and over-arching mission goals. 

By representing the hierarchy using probabilistic graphical 
models, we can readily learn the structure and parameters that 
define a user’s behavior by observing his activities over time—
what data they use, how it is visualized, and what decisions are 
made. Once learned, the resulting mathematical models may be 
combined with the techniques of reinforcement learning to 
predict behavior and anticipate the needs of the user, delivering 
appropriate data, visualizations, and recommending optimal 
actions. 

Keywords—decision making; hierarchical hidden Markov 
models; reinforcement learning. 

I. INTRODUCTION  
Human operators, particularly in the context of military 

operations, must quickly make critical decisions. Although 
these operators have access to unprecedented volumes of 
diverse data sources involving media reports, financial 
information, imagery, signals intelligence, and human 
intelligence, making decisions based on such data is 
confounded by many factors, including: 1) Limited human and 
computational resources; 2) difficulty synthesizing a coherent 
picture from volumes of manifold and (often) irrelevant data; 
3) an inability to derive meaning from or detect structure in 
high dimensional data; and, 4) the randomness and uncertainty 
intrinsic to the real world. When a human operator is making a 
decision, much of this data is irrelevant and, worse, confusing. 

To reduce the cognitive load of human decision makers and 
improve the quality of the decisions they make, we can develop 
frameworks—algorithms, APIs, and user interfaces—that 
detect what data is relevant and how it should be presented in a 
manner that is particular to the decision context. For our 
purposes here, a decision context specifies: 1) the goal, task, or 
mission relevant to our decision; 2) the reason the task is 
important (i.e., a global perspective); 3) any constraints and 
utilities associated with the decision; 4) previous decisions that 
were made, as well as likely future ones; and, importantly, 5) 
the set of candidate decisions available to the decision maker. 

In fact, human operators may not explicitly conceive of this 
decision context, but it nevertheless serves as a useful set of 
latent variables, which help us intelligently aggregate relevant 

data and determine how to best present it to the human user. 
We may use machine learning techniques to identify and 
classify decision contexts, as well as predict which data, in 
what formats and with what visual representations are most 
useful. 

In this paper we advocate an approach to building flexible 
frameworks that identify a decision context that may help 
anticipate the types of data the user will find useful, as well as 
how the data should be represented and visualized. As users 
interact with the framework to make decisions, entering search 
terms, selecting data, interacting with tables and plots, and 
ultimately making decisions, the framework learns and adapts, 
improving its predictive capabilities and honing its notion of 
what constitutes a decision context. 

II. DECISION CONTEXT 

A. The Importance of a Decision Context 
How can we learn the decision context for a particular task 

or goal? We have, at the lowest level, the measured input 
associated with how the user is using a system to help make a 
decision. This can be much more than the keywords associated 
with a database search. It could include what elements of an 
interface the user clicks on, heat maps of cursor positions, how 
long a given data source is investigated, what data elements a 
user expands—even, if available via camera interfaces, what 
information the operator is actually looking at, and for how 
long. The details we record about how an operator interacts 
with a user interface (UI)—or, even better, how an entire 
population of operators interacts with a UI—will yield 
valuable, predictive insight into what data is useful and what 
data is quickly discarded by the operator, with respect to the 
estimated decision context. This information can be gleaned 
from nearly any system by using external monitoring software 
packages. 

B. Decision Context as a Hierarchy 
Making the leap from crude interaction measurements to 

understanding the intent of the human operator and the 
decisions he is trying to make is difficult—indeed, a problem at 
the core of machine learning and artificial intelligence.  

One approach to attacking this problem is to understand the 
decision context as a hierarchy, wherein the lowest layers of 
the hierarchy represent the raw input signals—the 
measurements of operator interaction with the UI, and the 
structure and content of requested data; as we move up in the 
hierarchy, inputs from the lower layers are mapped to 
increasingly more abstract ideas—operator intent, operator 



confusion, mission goal, etc., which together form the decision 
context. One tool for efficiently representing such hierarchies 
is the hierarchical hidden Markov model (HHMM) [1]. 

C. An Example 
To take a concrete example, imagine driving a car. At the 

very lowest level, a driver is taking in visual and auditory 
information about obstacles and other cars on the road, and 
making numerous low-level decisions—press the gas, press 
the brake, turn left, and so forth. But these decisions are always 
being made in the context of a higher-order goal—say, 
navigating to the grocery store. And that goal, in turn, is made 
in the context of a yet higher order goal—needing to eat. 
Decisions are made at each level in the hierarchy, and 
influence the decisions made at the other levels.  

Consider Fig. 1, which illustrates a portion of a highly 
simplified hierarchical hidden Markov model. Each blue node 
in the network represents a state of the system. These states are 
arranged into a hierarchy of levels. Suppose you are hungry, so 
that at the highest level in this hierarchy you are in the eat 
state. There is some probability you will transition to another 
state at this level — the sleep state, for example. However, 
more likely, because of your hunger, you will transition to a 
lower level in the hierarchy, perhaps to the node that represents 
the go to the grocery store state. This in turn transitions to yet a 
lower level, to represent increasingly specific sequences of 
behavior — leave the house followed by drive to the store. 
When behavior at one level of the hierarchy is completed 
(which happens when one transitions to a black node), control 
is returned to one level higher in the hierarchy, where it left off. 
Note that, in general, states transition at lower levels change 
much more quickly than they do at higher levels: things are 
changing quickly as we drive down the street, stopping at stop 
signs, taking right turns, etc. But all the while we are still in the 
eat state—the higher order context for our behaviors has not 
changed.  

 
Fig 1: An example of a hierarchical hidden Markov network. 

Learning the structure of such a network, as well as the 
probabilities associated with transitions between states and 
levels, can be done efficiently and in an unsupervised manner 
using the mathematics of probabilistic graphical models [2, 3]. 
We have implemented these techniques in the context of 
autonomous vehicle control, predictive analytics, and 
electronic warfare. 

Using these mathematical models, we may take low level 
behavioral inputs and infer the higher order goals that are likely 
driving this behavior. Conversely, given a higher order goal, 
we can estimate the behaviors that will likely be used in the 
context of that goal. This information can be used to optimally 
configure a user interface, retrieve relevant data, and otherwise 
support operator decision making. We describe a way to 
achieve this optimization below.  

III. LEARNING BY INTERACTING WITH THE ENVIRONMENT 

A. From States to Actions 
We have argued that describing decision context as a 

hierarchy provides a rich way to describe operator behavior. In 
a sense, it provides a flexible way of modeling the state of the 
operator — why an operator is doing something, how he is 
trying to accomplish it, at a strategic level, and what resources 
he likely needs to support the effort. This representation can 
determine, at each time step, what the most likely decision an 
operator is likely to make, based on past behavior. But this 
representation alone does not provide a mechansim for learning 
— at a given timestep, the best possible decision. 

Consider again the car driving example: if we have an 
HHMM running, a few observations (our operator is in the car, 
he is driving toward the grocery store) will quickly establish 
the decision context (the operator needs to eat), and can predict 
that he will turn left at the upcoming intersection, because he 
has done so previously, and because it ultimately leads to the 
grocery store. But it predicts or suggests this decision only 
because of what has been observed in the past, not because 
turning left happens to be the fastest way to reach the grocery 
store. In order to optimize the decision making process, we 
harness another piece of mathematical technology, known as 
Reinforcement Learning.  

B. Reinforcement Learning 
Reinforcement Learning (RL) is a machine learning 

technique inspired by behavioral psychology, developed to 
emulate the manner in which humans learn via experience [4]. 
RL is concerned with teaching an agent how to interact with an 
environment in order to maximize a cumulative reward. RL has 
been successfully applied to problems across many domains, 
including industrial planning, autonomous vehicle control, 
pattern recognition, dynamic channel allocation in the cellular 
industry, and even the game of chess. 

At each time step 𝑡 of an RL algorithm, the agent finds 
itself in a state, 𝑠! ∈ 𝑆. When in this state, it has available a 
number of available actions, or decisions, 𝑎! . It selects an 
action according to a policy, 𝜋(𝑠, 𝑎) , which records the 
probability of selecting action 𝑎 given the agent is in state 𝑠, 
i.e., 𝜋 𝑠, 𝑎 = 𝑃(𝑎|𝑠) . Because of this action, the agent 
transitions to a new state 𝑠!!! and receives a scalar reward 
𝑟!!!. 

The reward function is a crucial component. It may be a 
complex, time dependent function of the state of the agent and 
his environment; it is used to encode the goals of a decision 
making task—that is, by optimizing this function, we achieve 
the planning goal. Surprisingly complex behavior can emerge 
from the use of even simple scalar reward functions. In this 



instance, the reward function could be the utility of the final 
decision, the speed at which the decision is made, or a 
combination of these and other measures. 

But—and this is critical—the goal of RL is not to maximize 
the reward received at the very next time step, but rather the 
total cumulative reward over all time, which we call the return: 

𝑅! = 𝑟! + 𝛾𝑟!!! + 𝛾!𝑟!!! +⋯                (1) 

The scalar 𝛾 ∈ [0,1] determines the importance of future 
rewards relative to near-term rewards. If 𝛾 = 1, distant future 
rewards are as important as near term rewards. For 0 < 𝛾 < 1, 
we refer to 𝑅! as the discounted return. 

The advantage of this approach is that the reinforcement 
learning agents are not required to act to maximize short-term 
gains, but rather learn to act in complex ways to achieve 
objectives, even if they must make occasionally suboptimal 
decisions. 

An object of fundamental interest in RL is the action-value 
function, which we denote by 𝑄(𝑠, 𝑎) . The action-value 
function records the expected discounted return: 

𝑄! 𝑠, 𝑎 = 𝐸{𝑅!|𝑠! = 𝑠, 𝑎! = 𝑎}                 (2) 

The superscript 𝜋 indicates that the action-value function is 
relative to the policy 𝜋. It tells us the expected value of being    
in state 𝑠 and taking action 𝑎. The goal of an RL agent is to 
learn this function by interacting with its environment. Once 
this function has been learned, determining an optimal policy, 
𝜋, is straightforward: given we are in state 𝑠, we select the 
action 𝑎 so that we maximize the expected value—that is, we 
select the optimal action 𝑎∗ = max! 𝑄(𝑠, 𝑎). In fact, we do not 
always select the optimal action, but sometimes (with 
probability 𝛽 ) select a suboptimal action. In this way, we 
manage to avoid the local minima in our reward functions, and 
may more rapidly adapt as our environment evolves in time. 

We learn the 𝑄  function iteratively. We begin with an 
arbitrarily initialized function, 𝑄(𝑠, 𝑎). Starting at time 𝑡, in 
state 𝑠!, we select an action 𝑎 using a policy derived from the 
function 𝑄—i.e., we select the action with the highest expected 
value. Because of the action, we find ourselves in state 𝑠!!!, 
and receive reward 𝑟!!!. We update the action value function 
as follows by replacing the value of 𝑄 𝑠! , 𝑎!  with, 

𝑄 𝑠! , 𝑎! + 𝛼 𝑟!!! + 𝛾max! 𝑄 𝑠!!!, 𝑎 − 𝑄(𝑠! , 𝑎!)     (3) 

The scalar 𝛼 ∈ [0,1] is a learning rate, which specifies how 
quickly the system adapts.  

After the update, we select another action, and the cycle 
continues. We can demonstrate (via practical applications and 
formal mathematical proofs) that this iterative procedure 
converges to the correct value for the action-value function 𝑄. 
The policy 𝜋  is implicit in the action-value function, as 
emphasized above: when we are in state 𝑠  we select 𝑎∗ =
max! 𝑄(𝑠, 𝑎). 

Importantly, the RL algorithm does not stop learning after 
this convergence, for the simple reason that the environment 
may be changing, and our the agent’s behavior may need to 
adapt accordingly. This occurs naturally in the context of the 

RL algorithms because there is some nonzero probability (𝛽, as 
defined above) that we will select a non-optimal action. This 
ensures that we are trying new things, and although we may 
not always be making the optimal decision, we can avoid 
making decidedly poor decisions because our environment has 
changed from beneath us — there is always, of course, a 
tradeoff between achieving optimal behavior and responding 
quickly to a changing environment (i.e., stability vs. 
maneuverability), but with these methods we can parameterize 
and quantify the tradeoff. 

C. Bringing the Pieces Together 
We have discussed two distinct pieces of mathematical 

equipment that may be used to deal with hierarchical decision 
making. For the first piece, an HHMM is used to learn the 
decision contexts relevant to a problem. These decision contexs 
define a set of states. Given a state, and a set of actions that the 
operator (or the computer) may take, our second piece of 
technology, Reinforcement Learning, sets out to learn what 
decisions will lead to the best outcomes, with respect to a set of 
reward functions. 

The fact that these two pieces share a common language—
they understand they operator’s state and the actions he may 
take, indicate they may work together effectively. Given the 
HHMM predicts we’re in a particular state, the RL algorithms 
recommend an action. As a results we transition to a new state, 
which is estimated by the HHMM, another action is 
recommended, and the cycle repeats. A human operator may 
either execute the decision recommended by the RL 
algorithms, or select another action—and the system learns 
from the resulting state in either case. 

To continue the analogy with the car: As the human 
operator approaches an intersection, the RL algorithm may 
understand that the user is in an eat state, attempting to go to 
the grocery store. Typically, at this point, according to the 
HHMM, the user turns left, but the RL algorithm may 
recommend right. As a result, the user arrives at the grocery 
store four minutes faster than usual. This reinforces the RL 
algorithm’s decision to recommend that action, and in the 
future, it will preferentially recommend it. If at some point 
something, say construction, renders that driving route 
unmanageable, the RL algorithms will adapt accordingly, and 
perhaps again recommend taking a left hand turn at the 
intersection, instead. 

IV. CONCLUSIONS 
Decision making must be made within the appropriate 

context, and we contend that context is best represented by a 
hierarchy of states. The lowest levels of this hierarchy 
represent the observed raw data, or specific low-level 
behaviors and decisions. As we ascend the hierarchy, the states 
become increasingly abstract, representing higher order tactics, 
strategies, and over-arching mission goals. 

By representing this hierarchy using probabilistic graphical 
models, we can readily learn the structure and parameters of a 
user’s behavior by simply observing their activities over 
time—what data they use, what plots they make and use, etc. 
Once learned, the resulting mathematical models may be used 
to intelligently predict behavior, anticipate the needs of the 



user, and deliver the appropriate data, visualizations, and other 
resources before the user even knows he wants it. 

Furthermore, given this hierarchical representation, we can 
use the mathematics of reinforcement learning to help the user 
make the best possible decision (or decisions) with respect to 
the specified reward functions. 

A. Moving Forward 
Although Reinforcement Learning methods have been 

successfully integrated with probabilistic graphical networks, 
which allow us to build autonomous decision making systems 
that learn and adapt from experience, and though these 
technologies have been applied to a number of disparate fields, 
including autonomous vehicle control, and electronic warfare, 
more research needs to be done to develop these into a general 
framework. 

In order to produce a flexible framework, we must create a 
method for easily defining reward functions in terms of the 

ultimate decision goals of the system, as well as methods for 
labeling the states of the decision context hierarchy. In 
addition, for specific uses, we must develop a consistent 
method for ingesting data so that it may be readily used by 
these algorithms. 

These and other challenges represent future research efforts 
in this area. 
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