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Abstract—We present an approach for recognizing high-
level geo-temporal phenomena – referred as events/occurrences–
from in-depth discovery of information, using geo-tagged photos,
formal event models, and various context cues like weather,
space, time, and people. Due to the relative availability of
information, our approach automatically obtains a probabilistic
measure of occurrence likelihood for the recognized geo-temporal
phenomena. This measure, however, is not only used to find the
best event among the merely possible candidates – witnessing the
data (including photos), but it can also provide informative cues
to human operators in the environments where uncertainty is
involved in the existing knowledge.

I. INTRODUCTION

Sensors have become one of the biggest contributors of
BIG DATA datasets. Numerous datasets have been already
generated in real-time with rich content, about various informa-
tion. Mobile wireless devices with multiple sensors like camera
and GPS, and internet connectivity, can continuously capture
photos and record camera parameters, GPS location, and time.
The availability of various web services like MapMyRide
1, and Wunderground 2, provides semantics like ride, and
geo-temporal weather status logs, using the captured sensory
data. Given that context data exists in massive volumes, an
information management paradigm is needed to correlate the
information and infer higher level semantics. We propose a
technique that automatically correlates various information,
and creates a context-aware event graph by combining event
models with contextual information related to photos, sensor
logs, heterogeneous data sources, and web services. Our tech-
nique automatically computes the occurrence-likelihood for
the event nodes in the output graph – referred as plausibility
measure that provides informative cues to human operators
in uncertain environments to make better decisions. Note that
this work provides a holistic view of the high-level events
witnessed by a dataset; further cause-effect decision-making
using the output of this stage in out of the scope of this paper.

Events, in general, are structured and their subevents
have relatively more expressive power [13]. In this work, an
event model (or event ontology) provides a multi-granular
conceptual description, i.e., it provides conceptual hierarchy
in multiple levels using containment event-event relationships
e.g., subevent-of, and subClassOf. In addition, event types
can have multiple instances; instance events are contextual,
and they should be augmented with context cues (like place,
time, weather). This makes instance events more expressive
than event types. Augmenting an instance event with context
cues adapts a concept to multiple contextual descriptions (e.g.,

1http://www.mapmyride.com/
2http://www.wunderground.com/

event type visit-landmark may have two instances; one instance
associated with World War II Memorial and the other to
Washington Monument). Consider the following example: A
person takes a photograph at an airport less than 1 hour after
his flight arrives. To explain this photograph, we first need the
background knowledge about the events that generally occur
in the domain of a trip. These semantics can only come from
an event-ontology that provides the vocabulary for event/entity
and event relationships related to a domain. An event-ontology
allows explicit specification of models that could be modified
using context information to provide very flexible models for
high-level semantics of events. We refer to this modification
as Event Ontology Extension. It constructs a more robust and
refined version of an event-ontology either fully or semi-
automatically. Secondly, given the uncertain nature of sensory
data (like GPS that is not always accurate), the event type
witnessed by the available context data is not decisive; in
the above example, the event might either be rent a car, or
baggage claim that are two possible conclusions — sometimes
no single obvious explanation is available, but rather, several
competing explanations exist and we must select the best one.
In this work, reasoning from a set of incomplete information
(observations) to the most related conclusion out of all possible
ones (explanations) is performed through a ranking algorithm
that incorporates the plausibility measure; this ranking process
is used in Event Ontology Extension.

Problem Formulation: Every input photo has context
information (timestamp, location, and camera parameters) and
a user. Each photo belongs to a photo stream P of an event
with a domain event model O(V,E) –handcrafted by a group
of domain experts– whose nodes V are event/entity classes,
and edges E represent the relationships between the nodes.
There is a bucket B of external data sources represented with
a schema. The sources can be queried using the metadata
of the input photographs and other available information,
including the information about the associated user. Given P ,
B, O, and information associated to the user, how does one
find the finest possible event tag that can be assigned to a
photo or a group of similar photos in P ?

Solution: We propose an Event Ontology Extension tech-
nique described as follows: select a relevant domain event
model through the information related to both P and the user.
Using P , B, O, and the user information, infer S – that
consists of the best relevant subevent categories to P– where
S ⊆ V . A member of S is the most plausible event category for
a group of contextually-similar photos. For a group of similar
photos cj , a function f calculates the plausibility measure mp

ij

for every competing event candidate si: f(si, cj) = mp
ij ; this

measure indicates how much si is relevant to cj such that



cj ⊂ P . Using the information from B, extend S with one or
more augmented instances of S, and obtain expressive event
tags T . An event tag tei ∈ T is a subevent of an event that
either exists in O, or can be derived from O such that tei
is the finest subevent tag that can be assigned to a group of
similar photos. If tei is an assignable tag to any photo, and
tei 6∈ O, we intend to extend O by adding tei to O such
that the constraints governing O are preserved. The output
is an extension to O that is referred as Or (see fig 1). We
argue that attribute values related to an inferred event need
to be obtained, refined, and validated as much as possible to
create very expressive and reliable metadata. Fig 3 depicts
the processing components of our proposed approach. We
used semantics such as spatiotemporal attributes/constraints of
events, subevent structure, and spatiotemporal proximity. In
contrast to machine learning approaches that are limited to
the training data set and require an extensive amount of anno-
tation, we propose a technique in which existing knowledge
sources are modified and expanded with context information
in external data sources including public data sources (like
public event/weather directories, local business databases), and
digital media archives (like photographs). With this knowledge
expansion, new infrastructures are constructed to serve relevant
data to communities. Event tags are propagated with event
title, place information (like city, category, place name), time,
weather, etc. Our proposed technique provides two unique
key benefits as follows: 1) A sufficiently flexible structure to
express context attributes for events such that the attributes are
not hardwired to events, but rather they are discovered on the
fly. This feature does not limit our approach to a single data
set; 2) leveraging context data across multiple sources could
facilitate building a consistent, unambiguous knowledge base.

Fig. 1. An example of an event model being extended with contextually
propagated instances.

Some of the main challenges of this work are: a) collecting
and correlating information from various sources – we need
a general mechanism that automatically queries sources and
represents the output; b) a validation mechanism to ensure the
coherency of the obtained data; c) currently, publicly available
benchmark data sets such as those offered by TRECVid do

not suit the purpose of this research (they deal with low
level events i.e.,activities). However, higher-level events have
relatively more contextual characteristics; d) according to the
useful properties of photos, relevant event categories in the
model must be discovered. This paper is organized as follows:
in section II, we review the prior art that use context and event
models for annotating photographs; in section III and IV, we
explain our solution strategy; this is followed by section V
that demonstrates our experiments, and section VI which is
the conclusion.

II. STATE OF ART

The important role of context is emphasized in [9]. Con-
text information and ontological event models are used in
conjunction by [16], [6]. Cao et al. present an approach for
event recognition in image collections using image timestamp,
location, and a compact ontology of events and scenes [4]; this
work, does not support subevent structure. Liu et al. reports a
framework that converts each event description from existing
event directories (like Last.fm) into an event ontology that is a
minimal core model for any general event [11]. This approach
is not flexible to describe domain events (like trip) and their
subevent structure. Paniagua et al. propose an approach that
builds an event hierarchy using the contextual information of
a photo based on moving away from routine locations, and
string analysis of English album titles (annotated by people) for
public web albums in Picasaweb [12]. The limitations of this
approach are: 1) human-induced tags are noisy, and 2) subevent
relationship is more than just spatiotemporal containment. For
instance, albeit a car accident may occur in the spatiotemporal
extent of a trip, it is not part of the subevent-structure of the
trip. According to [3], events form a hierarchical narrative
structure that is connected by causal, temporal, spatial and
subevent relations. If these aspects are carefully modeled,
they can be used to create a descriptive knowledge base for
interpreting multimedia data. In [14], a mechanism is proposed
that exploits context sources in conjunction with subevent-
structure of an event — this structure is modeled in a domain
event ontology. The limitation of this approach is no matter
how much an event category is relevant to a group of photos
in a photo stream, it is used in photo annotation; as a result,
the quality of annotation degrades.

III. EVENT ONTOLOGY EXTENSION

Photo’s incomplete information can be improved if com-
bined with the information related to a group of similar photos.
In this work, two images are similar if they belong to the same
event type. Partitioning a photo stream of an event based on the
context of its digital photographs can create separate subevent
boundaries for its photos [5]. An event is a spatiotemporal
entity [7]. In addition, optical camera parameters (CP) in
photos provide useful information related to the environment
(like outdoor) at which an event occurs [15]. We used a
clustering that partitions photos hierarchically based on their
timestamp, location, and CP. We used single linkage clustering
and Euclidean distance in our clustering technique. However,
one can use other approaches and refine the results. We present
the observations (i.e., photos/clusters) with a set of descriptors
– a cluster consists of a group of contextually similar photos.
In this section, we show that it is feasible to go from a set of



descriptors D to the best subevent category, when the following
conditions are satisfied: (a) the descriptors in D are consistent
among themselves, (b) the descriptors in D satisfy subevent
categories, (c) axioms of a subevent category are consistently
formulated in an event ontology, and (d) the inferred subevent
categories are sound and complete.

A. EVENT MODEL

We use a basic derivation of E* model [8] as our core event
model, to specify the general relationships between events and
entities. Specifically, we utilized the relationships subeventOf,
which specifies the event structure and event containment. The
expression e1 subeventOf e2 indicates that e1 occurs within
the spatiotemporal bounds of e2, and e1 is part of the regular
structure of e2. Additionally, we used the spatiotemporal rela-
tionships like occurs-during and occurs-at to specify the space
and time properties of an event. The time and space model that
we used in this work is mostly derived from E* model. The
relationship participant is used to describe the presence of a
person in an event. We use the relationships co-occurring-with,
and co-located-with, spatially-near, temporal-overlap , before,
and after to describe the spatiotemporal neighborhood of an
event. The relationship same-as between two events, makes
them equivalent entities. Also, we used several other relation-
ships to describe additional constraints about events (e.g., e1
has-ambient-constraint A, and A has-value indoor). Moreover,
to express a certain group of temporal constraints, we utilized
some of Linear Temporal Logic, Metric Temporal Logic, and
Real-Time Temporal Logic formulas [10], [2]. These formulas
are a combination of the classical operators ∧ (conjunction)
, ∨ (disjunction) , implication (→) , Allen’s calculus [1], �
operator, ♦ operator, linear constraints, and distance functions;
they are used to model complex relative temporal properties.
For instance constraint �[t1,t2](e1 → ♦[t2,t2+1800]e2∧D̃(e2) ≤
1800) states that e2 eventually happens within 1800 seconds
after e1 and that e2 lasts less than or equal to 1800 seconds.
We developed a language L with a syntax and grammar as
an extension to OWL to embrace complex temporal formulas.
Further, we extended the language to support a combination of
classical propositional operators, linear spatial constraints, and
spatial distance functions which can not be expressed in OWL;
equation feucDist(e1, e2,@ ≤ 100) shows a relative spatial
constraint in L, which states the event e1 occurs at most 100
meters away from the place at which event e2 occurs.

Domain Event Model: A domain event ontology provides
specialized taxonomy for a certain domain like trip, see fig
2. The Miscellaneous subevent category in this model is used
to annotate the photos that are not matched with any other
category. The general vocabulary in a core event model is
reused in a domain event ontology. For instance, Parking in fig
2, is a subClassOf of Occurrent (or event) concept in the core
event ontology. Also, relationships like subeventOf are reused
from the core event ontology. We assume that domain event
ontologies are handcrafted by a group of domain experts.

B. DESCRIPTOR REPRESENTATION MODEL

We represent a descriptor using the schema in script
{typed : valued, confidenced : val}, in which typed, valued,
and val indicate the type, value,and certainty (between 0 and
1) of the descriptor, respectively. For instance, the descriptor

{Flash : ‘off ‘, confidence : 1.0} for a photo, states that
the flash was off when the photo was captured with 100%
certainty. Photo and cluster descriptors follow the same rep-
resentation model, however the rules for computing the value
of confidenced are different. We will describe these rules in
the following paragraphs. The descriptor model of a cluster
includes two fields in addition to that of a photo: plausibility-
weight ≥ 0 , and implausibility-weight < 0. Later, we will
explain the usage of these fields. All descriptors are either
direct or derived. For photo descriptors, by convention, we
assume that a direct descriptor is straightly extracted from
the EXIF metadata of a photo, and its confidence is 1, as
in the above example. The direct descriptors that we used in
this paper are related to time, location, and optical parameters
of photos like GPSLatitude ,GPSLongitude , Orientation,
Timestamp, and ExposureTime. For a derived descriptor like
{sceneType : ‘indoor‘, confidence : 0.6}, the descriptor
value ‘indoor‘ is computed using direct descriptors like Flash,
through a sequence of computations that extract information
from a bucket of data sources. Some of these descriptors
are PlaceCategory3, Distance4, and HoursOfOperation5. The
confidence score is obtained from the processing unit used
to compute the descriptor value — we developed several
information retrieval algorithms for this purpose,in addition
to the existing tools in our lab [15]. If a descriptor value is
directly extracted from an external data source, confidenced
is equal to 1. Direct descriptors of a cluster must represent
all photos contained in it; some of these descriptors represent
boundingbox, time-interval, and size of the cluster. The confi-
dence value for direct descriptors is equal to 1, for instance,
in the descriptor {size : 5, confidenced : 1.0} that indicates
the number of photos in a cluster, confidenced is equal to 1.

Given a photo pi in a photo stream P , and the cluster c
that groups pi with the most similar photos in P , a processing
unit produces the descriptors of c using the descriptors of the
photos in c, and more importantly, this process is guided by the
descriptors of pi. Every photo in c must support every derived
descriptor of pi; such cluster is referred as a sound cluster
for pi, and the derived descriptors for c are represented by
the distinct union of the derived descriptors of the photos in c.
For a derived cluster descriptor d, the value of confidenced is
calculated using the formula in equation 1, in which |c| is the
size of the cluster, pj is every photo in c that is represented by
d, and g(pj , d) gives the confidence value of d in pj . To find
a sound cluster for a photo, the hierarchical structure that is
produced by the clustering unit, is traversed using depth-first
search — the halting condition for this navigation, if no sound
cluster was found, is when current cluster is a leaf node.

confidenced =
1

|c|
×
∑

f(pj , d) (1)

Descriptor Consistency: Consistency among a set of de-
scriptors is a mandatory condition to infer the best possible
conclusion from it. In this work, consistency must exist among
the descriptors of a photo as well as the descriptors of a cluster,
using entailment rules described below. (a) vi → vk: if vi
implies vk, then the rules for vk must also be applied to vi. This

3The category of the nearest local business to the coordinates of a photo.
4The distance of a local business to the coordinates of a photo.
5The hours during which a local business is open.



is referred as transitive entailment rule. For instance, suppose a
photo/cluster has the following description, ′outdoorSeating :
true′ ; ′sceneType : outdoor′; ′weatherCondition :
storm′, which implies that the nearest local business (e.g.
restaurant) to the photo/cluster, offers outdoorSeating, and the
weather was stormy when the photo(s) were captured. Given
the sequence of rules below,

outdoorSeating ∧ outdoor → fineWeather,

fineWeather → ¬storm

rule 2 is entailed that indicates an inconsistency among the
descriptors of a photo/cluster.

outdoorSeating ∧ outdoor → ¬storm (2)

(b) vi → funcremove(vk): vi implies removing the descriptor
vk. This is referred as a deterministic entailment rule.

(c) vi ∧ vk → truth value: rules of this type are referred
as non-deterministic entailment rules in which the inconsis-
tency is expressed by a false truth value e.g. closeShot ∧
landscape → false. In that case, further decisions on keep-
ing,modifying, or discarding either of the descriptors vi or
vk will be based on the confidence value assigned to each
descriptor — this operation is referred as update, which is
executed when an inconsistency occurs between two candidate
descriptors. The following rules are used by this process: (a)
for two descriptors with the same type, the descriptor with
lower confidence score is discarded, (b) for two descriptors
with different types, the one with lower confidence score gets
modified until the descriptors are consistent. The modification
is defined as either negation or expansion within the search
space. In case of negation, e.g. ¬outdoor → indoor, the con-
fidence value for indoor descriptor is calculated by subtracting
the confidence value of outdoor descriptor from 1. An example
of expansion is increasing a window size to discover more
local businesses near a location. To avoid falling inside an
infinite loop, we limit the count of negation, and the size of
search space during expansion, by a threshold. We assign null
to the descriptor that has already reached a threshold and is still
inconsistent. null is universally consistent with any descriptor.
The vocabulary that is used to model the descriptors for a
photo/cluster is taken from the vocabulary that is specified in
the core event model.

C. DATA SOURCES

We represent each data source with a declarative schema,
by using the vocabulary of the core event model. This schema
indicates the type of source output. In addition, it specifies
what type of the input attributes a source needs, to deliver the
output. Data sources are queried using the SPARQL language6.
A query is constructed automatically using the schema of data
sources, and the available information. Simply put, a source is
selected if its input attributes match the available information
I . At every iteration, I is incrementally updated with new data
that is delivered by a source. The next source is selected if its
input attributes are included in I . This process continues until
no more source with matching attributes is left in the bucket
B.

6http://www.w3.org/TR/rdf-sparql-query/

Fig. 2. An event ontology for the domain professional trip.

D. EVENT INFERENCE

From a set of consistent cluster descriptors (observations),
we developed a context discovery algorithm to infer the most
plausible subevent category described in a domain event on-
tology. This algorithm, uses the domain event model, which is
a graph; we represent this graph with the notation O(V,E)
in which V includes event classes, and E includes event
relationships. Traversing the event graph O starts with the
root of hierarchical subevent structure. The algorithm visits
event candidates in E through some of the relationships in E
like subeventOf, co-occurring-with, co-located-with, spatially-
near, temporal-overlap, before, and after — these relation-
ships help to reach other event candidates that are in the
spatiotemporal neighborhood of an event. An expandable list,
referred as Lv , is constructed from E, to maintain the visited
event/subevent nodes during an iteration i — if an event is
added to Lv , it cannot be processed again during the extent
of i. At the end of each iteration, Lv is cleared. In every
iteration, the best subevent category is inferred through a
ranking process, from a set of consistent observations.

To find the most plausible subevent category, we introduce
Measure of Plausibility (mp

ij) to rank event candidates. This
measure is computed using two parameters (1) granularity
score (wg), and (2) plausibility score (wAX ). wg is equivalent
to the level of the event in the subevent hierarchy in the domain
event ontology. To compute wAX , we used ’plausibility-
weight’ (w+) and ’implausibility-weight’ (w−) which are two
fields of a cluster descriptor. The value of w+ is equal to the
confidence value assigned to a descriptor, and the value of
w− is equal to −w+. If a descriptor could not be mapped to
any event constraint, wAX remains unchanged. If a descriptor
with w+ = α satisfies an event constraint, then w+ is added to
wAX , otherwise, w− is added to wAX (i.e., wAX = wAX−α).
The only exception is for the cluster descriptors time-interval
and boundingbox; if either one of these descriptors satisfies an
explanation, then w+ = 1; in the opposite case, w− ≤ −100
— when a cluster has no overlap with the spatiotemporal extent
of an event si, w− ≤ −100 makes si the least plausible



candidate in the ranking. According to the formula in III-D,
wAX also depends on the fraction of satisfied event constraints;
N is the total number of constraints for an event candidate.

wAX =
1

N

∑
w

j
AX , 1 ≤ j ≤ N (3)

Finally, we use the following instructions to compare two
event candidates e1 and e2: when e1 is subsumed by e2,
mp

ij for each event candidate is normalized using the formula
in equation 4, in which ei ≡ e1 and ej ≡ e2, otherwise,
ei.m

p
ij = ei.wAX . The candidate with the highest mp

ij is the
most plausible subevent category.

ei.m
p
ij =

ei.wAX

max(ei.wAX , ej .wAX)
+

ei.wg

max(ei.wg, ej .wg)
(4)

When a subevent category is inferred from a set of observa-
tions, it will not be considered again as a candidate for the next
set of observations. Event inference halts if no more subevent
category is left to be inferred from the domain event ontology.

EXTENSION: The inferred subevent categories E′ are
refined with the context data extracted from data sources in the
bucket B, through the refinement process. First, let us elaborate
this process by introducing the notion of seed event, which is
an instance of an inferred category in E′, which is not yet
augmented with information. An augmented seed-event is an
expressive event tag. The seed-event is continuously refined
with information from multiple sources.

Fig. 3. The Big Picture. Photos and their metadata are stored in photo-base
and metadata-base respectively. Using user info, including events’ type, time,
and space in a user’s calendar, a photo stream is queried, and its metadata is
passed to Clustering. In Validation, a set of consistent descriptors is obtained
from the cluster that best represents an individual photo — the component
event inference uses these descriptors in addition to a domain model that is
selected according to user info. Event Ontology Extension propagates the most
relevant subevent categories (to the input photo stream) with the information
discovered from Data Sources, then extends the event structure (ontology) with
the applicable propagated event instances (i.e., tags). The tags are validated
(using data sources), and added to the event ontology – the extended event
ontology is used in filtering that queries visual concept verification tool. In
this stage, first, irrelevant cluster branches are pruned. Next, for each matched
cluster, less relevant photos to a subevent tag are filtered. The output is a set
of photos labeled with some tags; these tags are then stored as new metadata
for the photos. The remaining photos are tagged as miscellaneous.

Our extension algorithm uses a similar strategy as what
we used in subsection III-C. The difference is, the attributes
of a data source at each iteration is supplemented by the
user information and the attributes of a seed-event (I) that
is represented with the same schema that is described in the
event ontology. Given a sequence of input attributes, if a data
source returns an output-array of size K, then our algorithm
creates K new instances of events with the same type as in
the seed-event, and augments them with the information in the
output-array. The augmented seed-events are added to I for
the next iteration; I is constantly updated until all the event
categories in E′ are augmented, and/or there is no more data
source (in the bucket B) to query. To avoid falling into an
infinite loop of querying data sources, we set the following
condition: a data source cannot be queried more than once
for each seed-event. We defined some queries manually that
are expressed through the relative spatiotemporal relationships
in the event ontology, and the augmented seed-events; these
queries are used to augment the seed-events with relative
spatiotemporal properties. When a seed-event gets augmented
with information, our technique validates the event tag by
using the event constraints, augmented event attributes, and
a sequence of entailment rules that specify the cancel status
for an event. For instance, if the weather attribute for an
event is heavy rain, and the weather constraint fine weather is
defined for an event, then the status of the event tag becomes
canceled. After the validation, event tags are added to the
domain event ontology by extending event classes through
typeOf relationship. This step produces an augmented event
ontology that is the extended version of the prior model (see
fig 1).

IV. FILTERING

Filtering is a two-step process; (1) redundant and irrelevant
clusters are pruned from the hierarchical cluster structure
produced by the clustering component, see fig 4-step-1. (2)
filter redundant photos from the matched cluster, see fig 4-
step-2. This is accomplished by applying the context and
visual constraints of the expressive tag that is matched to
the cluster. We used a concept verification tool7 to verify the
visual constraints of events using image features. This tool
uses pyramids of color histogram and GIST features. Filtering
operation is deeply guided by the expressive tags. During
this operation, subevent relations are used for navigating the
augmented event model.

V. EXPERIMENTAL EVALUATIONS

We focused on 3 domain scenarios vacation, professional
trip, and wedding. We crawled Flickr, Picasaweb, and our lab
data sets. We observed that many people store their personal
photos according to events; accordingly, we collected the
data sets based on time, space, and event types (like travel,
conference, meeting, workshop, vacation, and wedding). We
developed some crawlers to download about 700 albums of
the day’s featured photos; we crawled photo albums created
since the year 2010 since most of the older collections did
not contain geo-tagged photos. After 4 months, we collected
570 albums (about 60K photos) which had the required EXIF
information containing location, timestamp, and optical camera

7http://socrates.ics.uci.edu/Pictorria/public/demo



Fig. 4. Filtering Operation.

Fig. 5. Data set geographical distribution. The black bars show the number
of albums in each geographic region, and the gray bars show the number of
data sources that supported the corresponding geographic region.

parameters. We ignored the albums a) smaller than 20 photos,
b) with non-English annotations. The average number of
photos per album was 105. We used the albums from the most
active users based on the amount of user annotations, ending
up with a collection of 20 users with heterogeneous photo
albums in terms of time period and geographical sparseness.
The geographic sparseness of albums ranged from being across
continents, to cities of the same country/state (see fig 5).
We noticed that data sources do not equally support all the
geographic regions; e.g., only a small number of data sources
supported the data sets captured inside India. The photos
for vacation/professional-trip domains have higher temporal
and geographical sparseness compared to photos related to
wedding domain. The number of albums for vacation domain
exceeds the other two.

Experimental Set-Up

We picked the 4 most active users (based on the amount of
user annotation) from our non-lab, downloaded data set, and 2
most active users from our lab data set (based on the number of

Fig. 6. Role of context in improving the correctness of event tags.

collections they own). As ground-truth for the lab data set, we
asked the owners to annotate the photos using their personal
experiences, and an event model that best describes the data
set, while providing them with three domain event models.
For the non-lab data set, the ground truth provides a manual
and subjective event labeling done by the very owner of the
data set being unaware of the experiments. Because of the
subjective nature of the non-lab data set, the event types that
were not contained in the event domain ontology are replaced
with event type miscellaneous that is an event type in every
domain event ontology in this work. For each experiment, we
compute standard information retrieval measures (precision,
recall, and F1-measure), for the event types used in tags.
In addition to that, we introduce a measure of correctness
for event tags. The score is obtained based on multiple
context cues. For instance, label meeting with Tom Johnson
at RA Sushi Japanese Restaurant in Broadway, San Diego,
during time interval ”blah” in a sunny day, in an outdoor
environment, specifies type of the event, its granularity in the
subevent hierarchy, place, time, and environment condition.
We developed an algorithm that evaluates each cue with a
number in the range of 0 to 1 as follows: 1) event type: wrong
= 0, correct = 1, somehow correct = Lp

LTP
such that Lp is

the subevent-granularity level for a predicted tag and LTP

is the subevent granularity level for the true-positive tag (the
predicted tag is the direct or indirect superevent of the true-
positive tag i.e., Lp

LTP
≤ 1); 2) place: includes place name,

category and geographical region. If the place name is correct,
score 1 is assigned and the other attributes will not be checked.
Otherwise, 0 is assigned; for the category and/or geographical
region if correct, score 1 is assigned, and 0 otherwise. The
average of these values represent the score for place; 3) for
weather, optical, and visual constraint: wrong=0, correct =1,
unsure = 0.5; 4) time interval: if the predicted event tag occurs
anytime during the true-positive event tag, 1 is the score,
otherwise 0. The average of the above scores represents the
correctness measure for a predicted event tag. We introduce
average correctness of annotation that is calculated using the
formula in equation 5, where wj is the score for the jth

predicted tag.

correctness =

∑L
j=1 wj

L
; context = 1− Err (5)

The metric context in equation 5 is used to measure the
average context provided by data sources for annotating a
photo stream; parameter Err is the average error related to
the information provided by data sources used for annotating



a photo stream (0 ≤ Err ≤ 1); the following guidelines
are applied automatically, to measure this value: (a) if the
information in a data source is related to the domain of a photo
stream, but it is irrelevant to the context of the photo stream,
assign error-score 1. For instance, data source TripAdvisor
returns zero results related to Things-To-Do for the country
at which a photo stream is created. Also, if a photo stream
for a vacation trip does not include any picture taken in any
landmark location, TripAdvisor does not provide any coverage;
(b) assign error-score 0 if the type of a source is relevant as
well as its data (i.e. non-empty results); (c) if the data from a
relevant source is insufficient for a photo stream, assign error-
score 0.5. For instance, only a subset of business venues in
a region are listed in data source Yelp; as a result, the data
source returns information for less than 30% of the photo
stream; (d) for a data source, multiply the error-score by
a fraction in which the numerator is the number of photos
tagged using this data source, and the denominator is the size
of the photo stream. Do this for all the sources and obtain
the weighted average of the error-scores. The result is Err.
The implication of our result in fig 6 is as follows: while the
correctness of event tags (for a photo stream of an event) peaks
with the increase in context, relatively, smaller percentage
of photos are tagged using non-miscellaneous events, and
larger percentage of photos are tagged using miscellaneous
event. This means if the suitable event type for a group of
photos does not exist in an event ontology, the photos are
not tagged with an irrelevant non-miscellaneous event; instead,
they are tagged with miscellaneous event which means other.
The right side of the figure indicates that even though the
number of miscellaneous and non-miscellaneous event tags
does not change, the correctness is still increasing; this means
that the tags get more expressive since more context cues
are attached to them. The quality of annotations is increased
when more context information is available. This shows that
event ontology by itself is not as effective as augmented
event ontology. We demonstrate three classes of experiments
in table I. This table shows the average values (between 0 to
1) for the measure metrics discussed earlier (precision, recall,
F1, correctness). We use the work proposed in (Paniagua,
2012) as a baseline. It is based on space and time to detect
event boundaries in conjunction with using English album
descriptions. This baseline approach, with F1-measure about
0.6 and correctness of almost 0.56, illustrates that time and
space are important parameters to detect event boundaries. On
the other hand, the baseline approach is limited to using only
spatiotemporal containment for detecting subevent hierarchy,
it does not support other types of relationships among events
(like co-occurring events, relative temporal relationships) and
other semantic knowledge about the structure of events. Also,
it requires human-induced tags which are noisy. For the second
set of experiments, we use an event domain ontology without
augmenting it with context information. This approach gives
worse results since the context information is disregarded
during detecting event boundaries. It provides the F1-measure
of almost 0.32 and correctness of 0.13. Our last experiment
leverages our proposed approach, and achieves F1-measure of
about 0.85, and correctness of 0.82. Compared to our baseline
approach, we obtain about 26% improvement in the quality of
tags which is a very promising result.

Fig. 7. CPU-Time for experimental data sets of the 5 most active users.
Each data set is represented by its owner, domain type, source, and size. The
domain wed implies wedding domain.

CPU-Performance

The running time for our proposed approach, and visual
concept verification is shown in fig 7, which illustrates the
results for data sets of two sources i.e., lab, and non-lab
(including Flickr, and Picasaweb), and three event domains.

Cross-Domain Comparison : In general, we found smaller
number of context sources for wedding data sets compared
to the other two domains; as a result, the extension process
exits relatively faster, and the running time for the concept
verification process increases. We observed the correctness of
event tags degrades when Event Ontology Extension process
exists fast. This observation confirms the findings of fig 6.

Cross-Source Comparison: Within each domain, we com-
pared the cpu-performance among lab and non-lab data sets;
Event Ontology Extension exits relatively faster for non-lab
data sets. The justification for this observation is that we could
obtain user-related context like facebook events/check-ins from
our lab users (U3, U4), but such information was missing in the
case of non-lab data sets. This absence of information impacts
wedding data sets the most, since the context information in the
wedding scenario largely includes personal information such as
guest list, and wedding schedule that are not publicly available
on photo sharing websites. In professionalTrip scenario, this
impact is smaller than wedding, and larger than vacation; the
missing data is due to the lack of context information related
to personal meetings, and conference schedules. In vacation
scenario, data sources are mostly public; only a small portion
of context information comes from the user-related context
such as flight information,and facebook check-ins; therefore,
we did not find a significant change in the cpu-time between
lab and non-lab data sets.

VI. CONCLUSIONS

Our proposed technique addresses a broad range of re-
search challenges to achieve a powerful event-based system
that can adapt to different scenarios and applications like



Users U1 U2 U3 U4 U5

baseline

prec 0.65 0.58 0.39 0.53 0.74
recall 0.89 0.4 0.61 0.64 0.8
f1 0.75 0.47 0.48 0.6 0.77
corr 0.63 0.62 0.52 0.62 0.28

event ontology

prec 0.41 0.17 0.3 0.48 0.12
recall 0.4 0.2 0.5 0.43 0.24
f1 0.4 0.18 0.37 0.45 0.16
corr 0.2 0.08 0.12 0.2 0.03

proposed

prec 0.74 0.83 0.95 0.92 0.88
recall 0.91 0.93 0.88 0.7 0.97
f1 0.81 0.88 0.91 0.79 0.92
corr 0.8 0.75 0.85 0.79 0.9

TABLE I. RESULTS FOR AUTOMATIC PHOTO ANNOTATION FOR THE
DATA SETS OWNED BY THE 5 MOST ACTIVE USERS.

those in intelligence community, multimedia applications, and
emergency response. This is the starting step for combining
complex models with BIG DATA.

REFERENCES

[1] J. F. Allen and G. Ferguson. Actions and events in interval temporal
logic. In Journal of Logic and Computation, 1994.

[2] R. Alur and T. A. Henzinger. Logics and models of real time: A
survey. In J. W. de Bakker, Cornelis Huizing, Willem P. de Roever,
and Grzegorz Rozenberg, editors, REX Workshop, Springer, 1991.

[3] N. Brown. On the prevalence of event clusters in autobiographical
memory. Social Cognition, 2005.

[4] L. Cao, J. Luo, H. Kautz, and T. Huang. Annotating collections of
photos using hierarchical event and scene models. In Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on.
IEEE.

[5] M. Cooper, J. Foote, A. Girgensohn, and L. Wilcox. Temporal
event clustering for digital photo collections. ACM Transactions on
Multimedia Computing, Communications, and Applications, 2005.

[6] A. Fialho, R. Troncy, L. Hardman, C. Saathoff, and A. Scherp.
What’s on this evening? designing user support for event-based an-
notation and exploration of media. In 1st International Workshop on
EVENTS-Recognising and tracking events on the Web and in real life,
2010.

[7] B. Gong, U. Westermann, S. Agaram, and R. Jain. Event discovery
in multimedia reconnaissance data using spatio-temporal clustering. In
Proc. of the AAAI Workshop on Event Extraction and Synthesis, 2006.

[8] A. Gupta and R. Jain. Managing event information: Modeling, retrieval,
and applications. Synthesis Lectures on Data Management, 2011.

[9] R. Jain and P. Sinha. Content without context is meaningless. In
Proceedings of the international conference on Multimedia. ACM, 2010.

[10] R. Koymans. Specifying real-time properties with metric temporal logic.
In Real-Time Syst.,2(4), 1990.

[11] X. Liu, R. Troncy, and B. Huet. Finding media illustrating events. In
Proceedings of the 1st ACM International Conference on Multimedia
Retrieval. ACM, 2011.

[12] J. Paniagua, I. Tankoyeu, J. Stöttinger, and F. Giunchiglia. Indexing
media by personal events. In Proceedings of the 2nd ACM International
Conference on Multimedia Retrieval. ACM, 2012.

[13] S. Rafatirad, A. Gupta, and R. Jain. Event composition operators: Eco.
In Proceedings of the 1st ACM international workshop on Events in
multimedia. ACM, 2009.

[14] S. Rafatirad and R. Jain. Contextual augmentation of ontology for
recognizing sub-events. In Semantic Computing (ICSC), 2011 Fifth
IEEE International Conference. IEEE, 2011.

[15] P. Sinha and R. Jain. Classification and annotation of digital photos
using optical context data. In CIVR, 2008.

[16] W. Viana, J. Bringel Filho, J. Gensel, M. Villanova-Oliver, and H. Mar-
tin. Photomap: from location and time to context-aware photo annota-
tions. Journal of Location Based Services, 2008.


