Dynamic Data Relevance Estimation by Exploring Models (D²REEM)

H. Van Dyke Parunak
Soar Technology, Inc.
3600 Green Court, Suite 600
Ann Arbor, MI 48105 USA
van.parunak@soartech.com

Abstract—Analysts in many areas of national security face a massive (high volume), dynamically changing (high velocity) flood of possibly relevant information. Identifying reasonable suspects confronts a tension between data that is too atomic to be diagnostic and knowledge that is too complex to guide search. D²REEM (Dynamic Data Relevance Estimation by Exploring Models) is a knowledge-based metaheuristic that uses stochastic search of a graph-based semantic model to guide successive queries of high-volume, high-velocity data. We motivate D²REEM by considering the nature of knowledge-based search in high-volume, high-velocity data and reviewing current tools. We then outline the D²REEM metaheuristic and describe the state of progress in applying it to a range of model types, including geospatial movement, behavioral models, discourse models, narrative generators, and social networks. Finally, we outline work that needs to be done to advance the D²REEM agenda.

Keywords—retrieval, querying, semantic models, big data, stochastic search, any-time methods

I. INTRODUCTION

Analysts in many areas of national security face a massive, dynamically changing flood of possibly relevant information. “Big data” is typically described in terms of Volume (the amount of data), Velocity (how fast it changes), and Variety (the diversity of data formats); our concern here focuses on high-volume, high-velocity data. Activities of crucial interest can be expected to leave many “footprints” in available data, but identifying reasonable suspects confronts a tension between data that is too atomic to be diagnostic and knowledge that is too complex to guide search.

The data problem is that no single data item is diagnostic of an attack. Any one data item that might be part of an attack could also be part of a benign scenario. For example, a purchase of fermentation equipment might be a precursor to anthrax cultivation...or to opening a microbrewery. A new dissertation on gene splicing in microbes might point to a potential perpetrator...or just a promising new assistant professor. In data retrieval terms, static single-item queries give very low precision in identifying the overall event.

The knowledge problem is that while we can capture overall patterns of behavior that are diagnostic, matching them against massive data is combinatorially prohibitive. Representations that are available include discourse models that capture the different forms a conversation in social media might take [1, 2], hierarchical task networks (HTN) that capture goal-oriented behaviors [3, 4], social networks that show possible connections and flows among people and organizations [5, 6], and narrative models that capture causal dependencies [7]. Such a structure covers many possible behaviors, depending on which combinations of constraints are satisfied. If we could match such a structure against data, we would expect very high precision and recall. However, realistic structures can grow very large (for instance, an HTN might contain hundreds or thousands of atomic behaviors and constraints), and naively matching such a structure against massive data all at once is combinatorially prohibitive.

This paper describes D²REEM (Dynamic Data Relevance Estimation by Exploring Models), a knowledge-based metaheuristic that uses stochastic search of a semantic model to guide successive queries of high-volume, high-velocity data. Section II explores the challenge that D²REEM addresses and the current state of the art. Section III outlines the D²REEM metaheuristic. The heart of D²REEM is a knowledge-based model of the domain, and Section IV reviews several classes of models to which D²REEM may be applied and documents our success so far. D²REEM is a work in progress. Section V identifies a series of next steps for advancing this approach to semantic-driven search of big data. Section VI concludes.

II. THE CHALLENGE AND PRIOR WORK

Figure 1 summarizes the challenge that D²REEM addresses. Static single-record queries are simple, but can be efficiently applied to high-volume high-velocity data. Conventional matching methods are too inefficient to apply knowledge-rich patterns to such data. D²REEM is a novel way to match complex patterns to big data.

For years, the staple of information retrieval has been the record-oriented query, in which the analyst describes single data items that might be of interest. Static queries can be matched very efficiently, but their relevance depends on the state of knowledge about the world, which changes with each new piece of information.

The last 25 years have produced an explosion in graph databases, that is, databases that capture semantic relationships among data items in a graph structure. Graph databases can be
used to answer a range of queries in such data, including subgraph matching (does a specified pattern appear), shortest path discovery, path comparison, and computation of aggregate graph properties. Our focus in this paper is on subgraph matching. Queries against graph databases are done by specifying constraints over multiple nodes, such as a subgraph of the database, or a path that satisfies certain criteria, or specified aggregate characteristics of the graph [8]. Examples of such query languages are Cypher for Neo4J [9], or XPath for XML [10], or SPARQL [11] for RDF [12].

Graphs are a natural way to capture a knowledge model, but classical graphical query languages have several disadvantages for knowledge-based subgraph matching.

- They are generic to any graph-structured data, and do not take advantage of specific semantics in various kinds of graphical models. We wish to exploit the knowledge in a model.
- They require the entire query to match a subset of the data. We would like to search the data against a graphical structure (such as a hierarchical task network [HTN]) that expresses a range of possibilities, and identify coherent subsets of the pattern that the data support.
- In general, graph matching is intractable [13], with either exponential or NP-complete complexity in the size of the query. Thus queries must be kept small [8]. We wish to exploit large knowledge models.
- Graph databases require the data to be represented as a graph. We address high-volume high-velocity data streams (such as social media) where such preprocessing is not feasible.

III. THE D²REEM METAHEURISTIC

D²REEM is a metaheuristic, a high-level procedure that guides a lower-level process (in this case, record-level querying). Like many metaheuristics (e.g., genetic algorithms, ant-colony optimization, swarm optimization, artificial immune systems), its methods are strongly inspired by biological models.

Table I. Comparison of D²REEM with Subgraph Matching in Graph DBs

<table>
<thead>
<tr>
<th></th>
<th>Graph DB</th>
<th>D²REEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Size</td>
<td>Small</td>
<td>Large</td>
</tr>
<tr>
<td>Expresses complete</td>
<td>Expresses complete</td>
<td>Describes a range of structures of interest</td>
</tr>
<tr>
<td>structure of interest</td>
<td>structure of interest</td>
<td>Search is for a matching subset</td>
</tr>
<tr>
<td>Search is for the entire query graph</td>
<td>Search is for the entire query graph</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>Graph-structured</td>
<td>Record-structured</td>
</tr>
<tr>
<td>Query Semantics</td>
<td>Implicit</td>
<td>Explicit</td>
</tr>
<tr>
<td>Depends on use of same graph grammar for query and data</td>
<td>Enforced by PSE and EPM</td>
<td></td>
</tr>
<tr>
<td>Matching</td>
<td>Match entire query graph against data</td>
<td>Repeatedly match most relevant query node against data</td>
</tr>
<tr>
<td>Processing</td>
<td>Focus is on matching query graph against data graph</td>
<td>Focus is on exploring query graph in light of current data, and pursuing information on most relevant node</td>
</tr>
<tr>
<td>Complexity is NP</td>
<td>Complexity is NP</td>
<td>Complexity is linear in size of knowledge model</td>
</tr>
<tr>
<td>complete (subgraph isomorphism)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this section we introduce the metaheuristic, then explore two of its key components in more detail. The next section discusses classes of knowledge models to which it can be applied, and surveys our experience so far with each of them.

A. Overview

D²REEM shifts the focus of computation in doing knowledge-based exploration of big data. It moves computation away from matching the model against the data, and toward executing a process over the model that embodies the distinctive semantics of the model. Table I summarizes the differences between D²REEM and subgraph matching in a graph database.

Because D²REEM works with data as a stream of records, rather than a pre-processed graph, it must issue many record-level queries in order to match a knowledge model. It does this by executing a continuous cycle (Figure 2). Repeatedly, D²REEM

- explores the current state of the model,
- updates the priority for learning more about each node in the model,
- adaptively generates a query for the highest-priority node, and
- updates the model with what is learned from that query.

The queries can be posed to any data source, and do not
require predefining relationships among separate data items. The relationships among retrieved nodes are computed by exploring the model, not by a complex matching process, a strategy similar to graph simulation [14] (though unlike that work, we do not require that the data already form a graph).

Figure 1 shows the result. Static single-record queries can be applied to big data, but cannot capture complex patterns among records. Graphical databases can express patterns, but computational complexity forces the patterns to be smaller than a realistic behavioral model, and the data must be small enough and stationary enough to preprocess into a graph. By taking advantage of model semantics, D³REEM can match very large knowledge-rich patterns (with thousands of nodes) against high-volume, high-velocity data streams that are not in graphical form.

Figure 3 shows the D³REEM architecture. The heart of D³REEM is a Graphical Knowledge Model (GKM) with two characteristics:

- Edges in the graph represent causal or other sequential dependencies between nodes, so that a trajectory is a possible evolution of the world, and
- The likelihood of visiting a given node can be modulated by evidence attached to the node.

The Polyagent Sampling Engine (PSE) continuously samples alternative trajectories through the GKM to generate a distribution over possible trajectories reflecting current knowledge of the domain. The Evidence Prioritizer and Marshaller (EPM) examines these distributions to identify nodes about which more information would be useful, issues queries to retrieve that information, and updates the GKM with the results. The PSE’s ongoing exploration takes account of this new information, modifying the distributions over trajectories, and thus leading to new rounds of queries, implementing the processing cycle shown in Figure 2.

B. Polyagent Sampling Engine

By construction, each trajectory through a GKM corresponds to a possible instance of the dynamics implicit in the graph. Evidence currently on each node of the graph modulates the probability assigned to trajectories involving that node. We wish to construct a distribution over all possible trajectories. An approach we have found particularly tractable over many types of GKM is polyagent sampling.

A polyagent is a set of agents that collectively explore possible trajectories for a single entity or behavioral instance of interest. It consists of a single persistent coordinating agent (the “avatar”), which continuously generates a stream of simple agents (“ghosts”), each exploring a single trajectory. Figure 4 shows a polyagent sampling possible paths through a geospatial domain.

Ghosts have three biologically-inspired characteristics: they are manifold, apoptotic, and tropistic. “Manifold” means that many of them explore the domain in parallel, like multiple ants in an ant, or multiple chromosomes in genetic evolution, or multiple antibodies in an immune system, or agents in swarm optimization. “Apoptotic” means that they die after a fixed number of cycles. Thus the avatar can continue to generate new ghosts without overloading the system. “Tropistic” means that they move based on the characteristics of their environment, like ants. Physical ants plan paths through complex environments by depositing and responding to chemical pheromones. Polyagent ghosts respond to “digital pheromones,” scalar fields maintained on the nodes of the GKM. These fields may reflect evidence supporting or refuting a given node. In addition, ghosts deposit a presence pheromone on each node that they visit. The normalized presence pheromone over the entire graph gives a probability distribution over possible trajectories of the entity that the polyagent represents.

While the immediate inspiration of the PSE is biological, its mathematical underpinnings are based on Monte-Carlo tree search (MCTS) [15, 16], which explores multiple descendants of a single node to estimate the probability with which that node should be visited. In MCTS, the graph being explored is a game tree, in which the same game rules are applied in expanding each node. The PSE generalizes this concept to other graph structures, taking advantage of their distinctive semantics in the decision rules used by the ghosts and the digital pheromone fields they manipulate.

C. Evidence Prioritizer and Marshaller

The EPM has three functions:

- Based on the distribution of trajectories through the GKM determined by the PSE, identify the nodes for which additional information would be most valuable.
- Formulate and execute queries that will provide more information on the selected nodes
• Update evidence on the selected nodes based on the results of the queries.

We consider these in turn.

Identify nodes to guide queries.—Intuitively, D²REEM estimates the relevance of candidate queries based on the nodes for which additional information would be most valuable. The precise sense of “valuable” depends on the kind of GKM that is guiding the search, and the decisions that it is guiding. Here are some alternatives that are useful in different settings. In the next section, we give further examples of each of these.

In sparse environments, the most valuable query is one most likely to yield a hit. In our PROPS system, polyagent sampling over a geospatial lattice generates candidate trajectories for adversaries, and the most probable trajectory guides the decision of where to deploy scarce surveillance assets to increase the probability of detecting an adversary.

One might try to maximize some global measure over the GKM. One use for an HTN in D²REEM is to model a potential adversary’s behavior (e.g., mounting a biological attack). In an HTN (using the rTÆMS dialect [4]), each leaf task that is executed contributes to the quality that accumulates at the root, and the higher that quality, the better the objective is achieved.

By examining a set of possible trajectories identified by the PSE, the EPM can identify which trajectory would yield the highest root quality. If the HTN models adversarial behavior, this trajectory is most consistent with the adversarial intent we are seeking to detect. In this case, we want to select the nodes for which gaining more information might increase the probability of that trajectory.

In some cases, the nodes about which we want to learn more are those for which more information would sharpen the distribution over alternative trajectories. We estimate the effect of this choice by changing the evidence levels for various nodes in copies of the GKM and run the PSE on them, then compare the resulting distributions.

Formulate and Execute Queries.—The EPM submits queries to external data sources for those nodes that have been identified as of highest priority. Currently, we construct queries for each node manually in the course of formulating the GKM, and the EPM retrieves the specified query and submits it.

Update Node Evidence.—The EPM updates the evidence supporting the node on the basis of the response to the query. This change modulates the ongoing execution of the PSE, potentially changing the highest priority nodes in the next invocation of the EPM and directing the search process to the most relevant potential data.

IV. EXAMPLES OF D²REEM MODELS

The heart of D²REEM is a semantic model of some facet of the real world. We have identified numerous such models, and demonstrated various facets of D²REEM on them. This section outlines these examples. For each, it discusses

• how the model supports the two requirements identified in Section III.A (trajectories represent possible evolutions of the world; evidence on nodes modulates probability of trajectory)
• how it supports the PSE and EPM (in particular, what makes a node “relevant”), and
• what aspects of D²REEM have been implemented in it.

A. Movement on Geospatial Maps

The most mature class of GKM for polyagent sampling is the geospatial lattice, whose nodes correspond to tiles of the environment and whose edges represent adjacency among tiles [17].

A trajectory represents the movement of a target, and the probability that a trajectory visits a node depends on externally-provided information such as terrain, presence of friendly or adversarial forces, and combat activity. The cumulative distribution of presence pheromone thus reflects the probability of encountering the target as a function of location.

In the DARPA RAID project, we applied the PSE on such a model to urban combat. Figure 5 shows the close correlation of predictions of red force movement in a human-commanded wargame, compared with the actual movement of troops. Quantitatively, the PSE produced more accurate forecasts than both experienced human observers and game-theoretic or Bayesian reasoners [18].

In the ARL PROPS project, we used the PSE on a geospatial lattice to direct collection management. The relevance criterion in this case is to give priority to queries (intelligence requests) on areas most likely to generate a hit.

PROPS is the most mature implementation of the D²REEM metaheuristic to date, including ongoing PSE exploration of the knowledge model, dynamic query formulation, and updating of the knowledge model.

B. Hierarchical Task Networks

Goal-oriented behavior by intelligent agents is often represented with a hierarchical task network (HTN) [4, 19]. Figure 6 is a fragment of an HTN model for a mix of benign and nefarious cyber-activities. The nodes are actions, and are joined by two kinds of edges: subtask edges (solid) that connect a higher-level task (the goal) to lower-level tasks that

Figure 5: Example geospatial forecasts
carry it out, and sequence edges (dashed) that reflect precedence constraints. These precedence constraints are inherited by the leaves of the HTN. The graphical language in the figure is a simplification; our full formalism, derived from the TÆMS language [19], is much more sophisticated. In TÆMS, successful execution of a task generates “quality,” a scalar value, that propagates upward via combination rules. The degree to which a sequence of leaf actions satisfies a top-level goal is measured by the amount of quality that accumulates at that top node.

Polyagent sampling explores alternative trajectories through the leaf tasks. Each trajectory reflects a sequence of actions that an agent might execute in the world. The probability that an agent’s next step will move to a given task depends on the task’s feasibility (the satisfaction of its prerequisites), its desirability (based on the degree to which higher-level tasks have been achieved), and evidence for the task from the external world (provided by the EPM).

The HTN is an example of a GKM for which the value of generating a query for a node depends on a global characteristic of the model, namely, the change in the quality of the root node that a response to the query might generate. We have demonstrated the PSE on HTNs [4, 20], but not yet implemented an EPM for it.

C. Social Networks

We represent a social network [5] as a bipartite graph, in which one set of nodes represents people or organizations, and another indicates class of transaction. Several different kinds of transaction are possible, including communication, transfer of wealth, transfer of power (e.g., by confrontation), or transfer of status (e.g., by endorsement). Figure 7 is an example social network in our PSTK system (Power Structure ToolKit), in which the Agents are people and the bar graphs between them represent the levels of the different transaction types (in this example, Political, Military, Economic, Social, from the PMESII ontology).

A trajectory in a social network indicates a sequential transfer of social capital. For example, one may seek evidence for a money laundering operation that moves a financial payment makes its way through a series of organizations. Evidence of a specific transaction increases the likelihood of a transition from one agent to another.

Our current PSTK system explores possible flows using specialized processes residing on each agent, not the PSE. We have not implemented a EPM for social networks. If one is seeking to identify sequences of transactions, the relevance of a node to generate a query is measured by the degree to which additional information on that node would sharpen the distribution over alternative trajectories. For example, a node that is shared by several emerging trajectories would not rank as high as one that is unique to a single candidate trajectory.

D. Narrative Space Models

A Narrative Space Model (NSM) captures a set of many possible narratives that could explain the evolution of a situation [7, 21], and is an external representation for the mental activity of an analyst who is seeking to explain how a given state of affairs might come about. Each node in an NSM consists of a statement about the world to which belief may be assigned. The NSM has an edge from one node to another just if the first statement followed by the second forms a coherent segment of narrative.

Each trajectory through an NSM represents a coherent narrative about how the world might evolve from the origin to the destination. Figure 8 shows an abbreviated NSM that captures ways that al-Assad might stay in power or lose power in Syria. The “????” notation on edges between nodes are placeholders for edge weights that the PSE fits based on evidence on the nodes. In an NSM, external evidence for (against) an individual node increases (decreases) the probability of trajectories including that node.

We have implemented the PSE on NSMs, and modulated its behavior by attaching external evidence to nodes in the
NSM. In our work so far, this evidence has been attached by a human analyst, not by the EPM. Since our interest is in identifying the most likely narrative given the evidence available to date, the EPM for a NSM would weight nodes based on how much evidence for a given node would sharpen the distribution over emerging narratives.

E. Discourse Models

Dooley Graphs [2] reflect a speech-act view of discourse [22], in which each utterance seeks to accomplish something (e.g., Solicit an action or a statement, Inform, Commit, or Refuse). In a coherent conversation (a sequence of speech acts), later utterances may be related in different ways to earlier ones: they may Respond, Reply, Resolve, or Complete them. Detecting such coherent conversations from a high-volume, high-velocity stream of data (for example, a Twitter feed) would make a great contribution to surveillance activities.

There are a number of ways one could graph a sequence of utterances, depending on what one chooses as the nodes.

- The nodes could represent specific utterances, and edges would reflect the sequences among them. This representation loses critical information about who issues each utterance.

- One might analyze the conversation to characterize different states that it could assume, and then represent each state as a node, with edges representing possible state transitions. A state model, like an utterance model, deemphasizes the participants, and in addition makes it difficult to distinguish specific conversations.

- We could represent participants as nodes, with edges representing utterances from the source to the target. Like the state model, the participant model does not clearly capture the progress of an individual conversation.

A Dooley graph (e.g., Figure 9) is a bipartite graph. One class of nodes (circles in Figure 9) represents characters, which are participants at distinguished stages of the discourse, based on the notions of resolution and completion. Thus participant A may appear as nodes A1 and A2. The other class of nodes (squares in Figure 9) represents utterances, which are characterized by type of speech act. Utterances that resolve or complete one another tend to form tightly-connected components of the graph, while those that take off in new directions spawn new components. A trajectory through the Dooley graph represents a realization of a conversation. Retrieving a tweet from (say) A to B adds evidence to A-characters and B-characters; recognizing the tweet as a specific speech act adds evidence to utterance nodes requiring that speech act.

We have not yet implemented either the PSE or the EPM on Dooley Graphs. In using a Dooley Graph for surveillance of social media, one would seek to identify well-formed conversations and classify them (e.g., meeting organization, viral propagation of opinion, purchase activities). For this purpose, the EPM should prefer nodes based on their potential for sharpening the distribution over alternative trajectories.

V. Next Steps

Four main avenues for extension of D^3REEM provide a range of challenging and important research opportunities: multiple model types, model management, query generation, and model linking.

Multiple Model Types: Our most complete example of D^3REEM is the PROPS system, which treats the geospatial domain. The NSM is the next most mature, demonstrating the effectiveness and computational efficiency of modulating the state of a non-geospatial knowledge model by external evidence. In addition to refining these applications, we seek to extend the complete D^3REEM cycle to other model types. As we configure the PSE and EPM to different model types, we
gain valuable insights into how the underlying mechanisms of
the metaheuristic can be generalized.

Model Management: As noted in Section II.A, an
important difference between D'REEM and graph DBs is how
knowledge is expressed. Graph DBs construct a small
graphical query using the same graph syntax that governs the
data, and seek to match the entire query graph against the data
graph. D'REEM uses a large GKM that captures a range of
hypotheses, and then explores this model in the light of the
data to identify high-priority record-level queries. The use of a
complex knowledge model is a strength, in that it externalizes
analysts' internal mental models, facilitating collaborative review and enhancement. But it is also a weakness, since
constructing such models is itself a labor-intense process.

For many long-standing problems, model construction is
integral to the analytic effort [21], and D'REEM offers an
additional incentive to construct such models. But it will be
even more useful if model construction can be partially
automated. For example, in the case of the NSM, techniques
exist to merge specific narratives in a domain of interest into a
NSM [23, 24]. Such technology could exploit past analytic
products (which often include a narrative of the event under
investigation) to enhance a NSM of the domain. Another
example is the Disciple technology [25], which has been used
successfully to learn inferential relations of the sort one might
encounter in a belief network.

A strength of the PSE approach to model exploration is the
locality of ghost movement and pheromone-based interaction.
This locality means that GKM can be extended incrementally,
and encourages the notion of a persistent library of
dynamically updated models as a central resource in analysis.
Development of mechanisms for managing such a library will
considerably advance the analytic enterprise.

Query Generation: One task of the EPM is formulating
queries that can provide additional information on GKM nodes
that it identifies as highly relevant. In our current
implementations, these queries are manually constructed along
with the GKM. Given the description of a node in a model and
schemata for external data sources, one would like to generate
queries automatically, a task that will rely heavily on research
in ontological reasoning and semantic web technologies.

Model Linking: The same analytic tasking can be viewed
through the lens of multiple model types, and we would like to
facilitate the flow of information between these model types by
defining mappings between nodes in different model types.
Like the previous topic, this one depends on advances in
ontological reasoning, as well as model theory and other
formal tools [26], and will require attention to aligning multiple
levels of meaning [26, 27], not all of which may be represented
in each model.

VI. CONCLUSION

Matching knowledge-rich patterns against high-volume,
high-velocity data is combinatorially prohibitive. The
D'REEM metaheuristic is a new approach to such retrieval
problems that shifts the computational burden from graph
matching (a NP-complete problem) to iteratively exploring a
knowledge model and issuing focused queries for the data that
is most relevant in the light of current knowledge (a process
that is linear in the size of the knowledge model). D'REEM
can be applied to any graphical knowledge model in which
edges represent causal or other sequential dependencies and
in which adding data to individual nodes can change the
probability of a trajectory.

REFERENCES

analysis of actual human collaboration on the Web," Ph.D., Information,
Structure, Systèmes, Université Montpellier II, Montpellier, France, 2006.

Dooley Graphs for Agent Design and Analysis," in Second International

Analysis, and Implementation," Computer Science, University of
Maryland, College Park, MD, 1995.

Hilscher, and K. Decker, "Stigmergic Modeling of Hierarchical Task
Networks," in the Tenth International Workshop on Multi-Agent-Based
98-109.

Toolkit for Modeling Dynamic Power Structures," in the 16th Behavior
Representation in Modeling and Simulation Conference (BRIMS),
Providence, RI, 2008.

about a Highly Connected World. Cambridge, UK: Cambridge University

Estimation of Realistic Mental Models," in Thirteenth Workshop on
Multi-Agent Based Simulation (MABS 2012, at AAMAS 2012), Valencia,
Spain, 2012, pp. 43-55.

[8] P. T. Wood, "Query Languages for Graph Databases," SIGMOD Record,
vol. 41, pp. 50-60, March 2012.

[10] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie,
and J. Siméon. (2011, 22 August). XML Path Language (XPath) 2.0

dations of Computer Science (FOCS 95), Milwaukee, WI, 1995.

[15] M. Kearns, Y. Mansour, and A. Ng, "A Sparse Sampling Algorithm for
Near-Optimal Planning in Large Markov Decision Processes," presented at the the Sixteenth International Joint Conference on Artificial
Intelligence, 1999.

