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Abstract—The mathematical theory of sketches provides a
graphical framework for describing and relating knowledge
representations and their models. Maps between sketches can
extract domain-specific context from a sketch, express knowledge
dynamics and be used to manage representations created for
distinct applications or by different analysts. There are precise
connections between classes of sketches and fragments of first-
order, infinitary predicate logic. EA sketches are a particular class
that is related to entity-attribute-relation diagrams and can be
implemented using features available in many relational database
systems. In this paper we illustrate sketch theory through devel-
opment of a simple human terrain model. We apply the theory to
an example of aligning sketch-based knowledge representations
and compare the approach to one using OWL/RDF. We describe
the computational infrastructure that is available for wor king
with sketches and outline research challenges.

I. I NTRODUCTION

We use the termknowledge representationto refer to a
mathematical model of the concepts that we use to understand,
reason about and navigate our environment. It evolves in
response to new experiences, concept formulation and the
mission at hand. Ownership, membership, amicability, people
and plans are examples of interrelated entities in this network.
We usedecision spaceto refer to a sets of individuals and
relationships that our knowledge representation organizes. This
space is more dynamic, densely populated and uncertain than
the knowledge representation. The concept of ownership, for
example, encompasses a list of ephemeral connections between
individuals and their possessions. Our understanding of owner-
ship persists while instances of this relationship come andgo.
Moreover, different people can share a common understanding
of ownership even if the instances of this relationship that
they observe have little or no overlap. They apply the same
knowledge representation to distinct models.

Different knowledge representations may characterize the
same concept in distinct ways. Renaming the concept ‘own-
ership’ as Eigentum or propriété, for example, results ina
new presentation of the concept. A complex idea may, more
generally, be decomposed into distinct, simpler concepts by
different people. Finally, as we build a knowledge model to
organize our observations of a greater range of phenomena,
we frequently derive and extract parts of it that are suitable
for context-based reasoning about particular situations.

A mathematical formulation of knowledge should dis-
tinguish between the knowledge representation and decision
space models. It should support evolution of the former and
the dynamics and uncertainty that are characteristics of the
latter. The mathematical framework should support derivation
of context-specific views of a knowledge representation and
a decision space. Finally, it should provide mechanisms for

aligning knowledge models that differ due to simple renaming
and more complex reformulations of concepts.

Examples of knowledge representations include relational
algebra and its implementation in database languages (such
as SQL), entity-relation-attribute diagrams, ontologies, data
specifications and sketches. Our interest in the latter results
from its graphical nature, deep connections between sketch
theory and logic and a rich notion of contextual view of a
sketch. Sketch theory has proved to be a valuable tool in
mathematical logic and the theory of computer programming
languages. Its relationship to other semantic technologies,
therefore, warrants further exploration.

The purpose of this paper is to introduce the sketch data
model to researchers and practitioners of other semantic-based
technologies and to describe a program for its application.We
seek to give an overview of the theory through discussion
and examples without focusing on the mathematical details.
The following themes emerge. (1) An ontology or sketch
is a presentationof knowledge. Different presentations of
the same knowledge are possible. Thetheory of a sketch
is the formal mathematical object that such presentations
generate. (2) Alignment of distinct knowledge representations
and derivation of views of particular ones are more appro-
priately formulated using theories than presentations. (3) The
sketch model emphasizes the distinction between a knowledge
representation and its models. Instances, incompletenessand
uncertainty may be more appropriately incorporated in models
rather than in knowledge representations themselves. (4) The
software infrastructure available for working with sketches
currently is meager compared to that which has been developed
around other semantic technologies such as OWL/RDF.

A. Concept of Operations

Figure1 illustrates an example concept of operations that
shows how the sketch data model might be used in a decision
support system. Later in this paper we discuss details of partic-
ular aspects of the data pipeline. Data from distributed sources
is marshaled into local data modelsS that are expressed as
sketches. The local sketches are aligned using sketch maps into
a common parentT called atheory. T is the sketch generated
by the local sketches taking into account potential overlaps.
Parent sketches evolve over time as local ones are modified
and new data sources come online. Within a particular mission
context, a viewV of the system knowledge representation
T is extracted. The problem of mathematically characterizing
the context from event and decision histories is a challenging
one and is an active area of research for applications such
as Internet search. Aview is then a sketch equipped with a
sketch map into the current parent theory. Models of sketches
(including views) are distinct from the sketches themselves.



They include the observed instances that populate the classes
and relations that symbols in the sketch represent. Uncertain-
ties and partial information are accounted for in the model,not
in the sketch. Data artifacts relevant to a view are analyzedto
estimate statistical metrics for potential future states.Figure1
is conceptual and necessarily incomplete. It does not show,for
example, the roles of user interface components, visualization
tools and query and reasoning engines, nor of event and
decision history archives which would be built into a real
command decision system.
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Fig. 1. Concept of operations for the sketch data model

B. Historical Background

Category theory is a mathematical field introduced by
Eilenberg and Mac Lane in the 1940s to manage transforma-
tions between certain geometric and algebraic structures.It saw
explosive growth after Kan discovered the unifying concept
of adjoints in 1958 [22]. During subsequent decades it has
been applied across diverse areas of computer science and
mathematics including statistics [9], linguistics [8], dynamic
systems, semantics of programming languages [3], topology
and, in particular, logic [20] where it provides a non-set-
theoretic foundation for mathematics. The theory of sketches
is a subdomain of category theory developed by C. Ehresmann
in 1968 [11]. It was almost exclusively a tool of the French
school of category-theorists until publication of [2], [3]. A
category is a collection ofobjects(e.g., sets, probability spaces
or vector spaces) and maps between them (e.g., functions,
stochastic matrices or linear transformations). In this paper
we use categories to construct models of sketches. Sketches
themselves form a category having rich structure [13].

II. SKETCHES, MODELS AND MAPS

A sketch is a graph-based knowledge representation. It
consists of an underlying directed graphG together with
extra structures that impose semantic constraints on models.
Figure 2 shows part of the underlying graph of a simple

sketch of human terrain knowledge. The vertices Person, For-
eign, Coalition, Resident, Village and TribalElement represent
classes of entities. Individuals who populate these classes
are typically not represented inG (although it is possible
to include them explicitly). They instead occur in semantic
models of the sketch and may be realized as, for example,
rows in database tables. The SeenIn vertex represents a relation
between the two classes to which it has edges. It represents the
situation in which foreigners may be observed in one or more
local villages. Instances of this relation, like individuals who
populate the classes, occur in models of the sketch instead of
being represented in the sketch itself.
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Fig. 2. Part of a graph representing human terrain knowledge

Intuitively, the edges ofG represent functions. As we dis-
cuss below, however, edges may model incomplete or uncertain
information. We intend the edge from Resident to Village, for
example, to model a situation in which each resident of an
area of interest is associated with a unique home village. Each
instance of the class represented by the Coalition vertex is
to be based in a specified village. Moreover, each village is
settled by a unique tribal element. The two edges from SeenIn
represent the process of identifying a foreigner and a village
in which he or she was observed. Multiple or no observations
of a particular individual are possible. Note that in a sketch,
relations (properties) are modeled by vertices rather thanedges
as is the idiom in OWL/RDF. A relation vertex, however, is the
domain of edges that specify the types of entities that it links.
That is, the types of the variables that occur as the domain and
range of (binary) relations must be specified.

Various features of the human terrain that we seek to
represent are not captured by the graph alone. We express these
using extra structures calleddiagrams, conesandcocones. In
SectionII-A below we give a general discussion of the way in
which these constraints are specified using graph maps. In this
paper we describe examples of how these concepts are used
but do not define them precisely. For details, see [2].

The triangle involving Resident, Village and TribalElement
is an example of adiagram. It expresses the intuition that the
tribal element of a residentR should coincide with the tribal
element that has settled the village in whichR lives. This
semantics is imposed on models of the sketch by including
an appropriate diagram in the sketch constraints and by the
mathematical definition of sketch model. The constraint can
be implemented, for example, using database triggers if the
instances are stored in database tables.

The Foreign, Coalition and Resident classes are to be
construed as subclasses of Person. Again, this intent is not
captured by the graph alone. We express subtype relations by



including particularconeconstraints in our formulation of the
sketch. One such cone would be included for each of the three
subtypes that occurs in Figure2. Cones, like diagrams and
cocones, impose mathematical requirements on models.

Finally, we may intend the classes Foreign, Coalition and
Resident to be mutually exclusive and to exhaust the possible
classifications of Person instances. This feature is not captured
by the graph but can be included in the sketch using three cones
(to assert the subtype constraints) and acoconeto assert the
disjoint union constraint.

A. Sketch Maps

A mapH → G from a graphH to a graphG is a pair
of functions that assigns aG vertex to eachH vertex and a
G edge to eachH edge in a way that respects the source
and target information for edges in the two graphs. Graph
maps play important roles in defining and applying sketches.
First, each of the three types of semantic constraints (diagrams,
cones and cocones) is defined as a type of graph map from a
base graphB to the underlying graphG of the sketch.

B // G

The three classes of constraints are distinguished by the shapes
of their base graphs. Second, maps between sketches are
defined to be maps between the underlying graphs that preserve
the semantic constraints. To illustrate this idea, observethat a
graph map

G // G′

between the underlying graphs of two sketchesS and S ′

converts eachS constraintB −→ G into a graph map

B // G // G′

via composition of graph maps. IfG → G′ is a sketch map,
then this composite is also anS ′ constraint. Maps between
sketches give a rigorous, general framework for addressing
knowledge model dynamics, alignment and views. For exam-
ple, if a knowledge modelS ′ subsumes another modelS, we
can express this fact using a sketch map.

S // S ′

Not every sketch map expresses a parent-child relationship,
however. Those that do are called monomorphisms and satisfy
a condition that generalizes the notion of a one-to-one function.
A sketch map can, alternatively, merge distinct vertices or
edges to eliminate redundancy such as equivalent classes that
have been given distinct names.

Alignment of intersecting sketchesS1 andS2 in a common
parentS is expressed by the following diagram of sketch maps

S

S1

66mmmmmm
S2

hhQQQQQQ

S0

hhQQQQQQ
66mmmmmm

whereS0 is a sketch representing the intersection of the two
knowledge models. We discuss an example in SectionII-E.

B. Semantic Models of Sketches

Individuals who populate the classes of a sketch are not
typically represented in the sketch itself. They are elements
of modelsof the sketch. As we discuss below, this framework
clarifies the distinction between the syntax of a knowledge
representation and its semantics. We can use this formulation
to introduce partiality (i.e., missing data) and uncertainty into
models rather than requiring these features to be part of the
syntax. First, however, we describe deterministic, set-based
models. A (set-based)model of a graphG is an assignment
of a setM(v) to each vertexv of G and a functionM(e) :
M(A) → M(B) to each edgee : A → B of G. There are no
further restrictions on models of a graph.

A model of a sketchS is a model of its underlying graph
G that satisfies the restrictions that are represented by the
constraints (diagrams, cones and cocones) ofS. In this paper
we seek to give an overview of the theory and do not give a
precise definition of these constraints or their semantics.For
details, see [2]. Figure 3 shows a model of a fragment of the
human terrain sketch that was shown in Figure2. The Resident
and TribalElement vertices are interpreted as sets of instances.
The edge labeled ‘has’ is interpreted as a function between
the sets. To constitute a model of the sketch, the functional
interpretations of the edges livesin and settledby must be
consistent with that of ‘has’.

M(Resident)
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Faysal
Bashir
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M(TribalElement)

Dhulbahante

Isaaq

Darod

M(has)

Fig. 3. Functional model of a fragment of the sketch shown in Figure 2.

By varying the semantic category in which sketch models
take their values, we may represent lack of information and
uncertainty. The edges of the underlying graph may, for
example, represent partial functions rather than total functions.
Recall that a partial function from a setX to a setY is a
functionX ′ → Y for some subset ofX and that composition
g ◦ f of partial functions is associative (like composition of
total functions) and is defined by further restricting the domain
of f . Figure4 shows a partial function model of a fragment of
the human terrain sketch that was shown in Figure2. In this
example, the tribal element membership of Faysal is unknown.
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Fig. 4. Partial functional model of a fragment of the Figure2 sketch.

In Figure5 we illustrate a probabilistic model of the edge
‘has’ that occurred in Figure2. In this model, each point of
the source object (which for ‘has’ is the setM(Resident))



is mapped to a probability function on the target object (the
setM(TribalElement) in this case). That is, in this semantic
category, edges are interpreted as stochastic matrices (all
entries are non-negative and columns sum to1). Composition
is matrix multiplication.
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Fig. 5. Probabilistic model of a fragment of the Figure2 sketch.

There is a rich literature investigating classes of sketches, as
distinguished by the types of semantic constraints they include,
and classes of semantic models. Examples include linear, finite
product, finite limit, EA (entity-attribute) and mixed sketches.
The expressiveness of the class of sketch imposes requirements
on the classes of structures that may be employed in semantic
models. Just as various OWL dialects are associated with
different fragments of the predicate calculus, so too are classes
of sketches.

C. Maps of Models

The theory of sketches also provides a notion of maps
between semantic models. We call thesemodel maps. They
can be used to represent model dynamics, comparisons and
combinations. For example, the fact that different people
may populate our tabulations of the Resident class that is
represented by the corresponding vertex of Figure2, should
not require us to change the syntax of our knowledge represen-
tation. In other words, our understanding of the concepts and
relationships of the human terrain does not necessarily change
when we observe a new individual to add to our information
system. This modular approach to information and knowledge
management is a strength of the sketch framework.

As with models themselves, model maps can introduce
partiality and uncertainty. We focus on deterministic maps.
Let M and M ′ be models of a sketchS. For each vertex
v of S, the models have corresponding setsM(v) andM ′(v)
of individuals. A mapτ from M to M ′ is a collection of
functions

M(v)
τv // M ′(v)

between these sets of instances. In order to be a map of models,
these functions must be consistent with the functions in the
models themselves that arise from edges in the underlying
sketch graph. Two modelsM andM ′ of the Figure2 sketch,
for example, each have associated sets of Resident and Village
instances. IfM ′ subsumesM by, for example, adding new res-
idents, then the new model should maintain the data about the
previously-known residents. This is expressed by the following
diagram in which we useτ to denote the two functionsτVillage
andτResident.

M(Resident)

M(lives in)
��

τ // M ′(Resident)

M
′(lives in)

��
M(Village)

τ
// M ′(Village)

The definition of map between models requires the two paths
to define the same function. That is, the village of a resident
who occurs in both models should be the same in both models.
Of course, not every map of models represents an extension or
subsumption relationship. As with alignment of sketches, we
can express alignments of models using maps. For example,
alignment of intersecting modelsM1 and M2 in a common
parentM is expressed by the following diagram of model
maps whereM0 is a model representing the intersection.

M

M1

55llllll
M2

iiSSSSSS

M0

hhRRRRRR
66llllll

D. Presentations and Theories

A sketch (or an OWL ontology) is a compactpresentation
of the much larger body of knowledgeT that it generates. For
example, if an ontology defines a classA, a subclassA′ of
A and a propertyP that is defined onA, then we can derive
a subpropertyP ′ by restrictingP to A′. This restrictionP ′

may or may not be explicitly defined in the ontology. It is
part of the larger body of knowledgeT that the ontology is
designed to present. Sketch theory defines and provides tools
for analyzing this generated body of knowledge.

The theoryT of a sketchS is the sketch thatS generates
by recursive application of the constructions supported by
the type of sketch. These constructions can include property
chains (i.e., composition), property inverses (i.e., reciprocals),
property restrictions, products (ordered pairs) and coproducts
(unions) of classes, and extraction of subclasses and subprop-
erties. The constructions are specified as types of diagrams,
cones and cocones since these are the concepts used to specify
semantic constraints in sketches.T is usually much larger
than S. It can be infinite even ifS is finite. Consequently,
when we write down a knowledge representation, we almost
never write downT . We formulate a presentationS instead.

In Figure6 we compute a small example. The underlying
graph G of the sketch has two vertices and two edges.
To make the example a bit more concrete, assume thatP
represents a class of people andE represents a class of elected
officials who serve political districts. The edger represents
an assignment of elected officials to people whileu identifies
elected officials as particular instances of people. We impose
one semantic constraint: the property chain (compositer ◦ u)
of the two edges indicated in the triangle should coincide with
the identity function on elected officials. That is, each elected
official serves his or her own political district. The finite graph
G could, potentially, generate an infinite family of property
chains:r ◦ u, u ◦ r, u ◦ r ◦ u, r ◦ u ◦ r, etc. The semantic
constraint has the effect of truncating this list so that theonly
distinct properties are those shown in the path graph on the
right side of Figure6. The path graph is the underlying graph
of the theoryT1 of the sketchS1 whose underlying graph is
shown on the left side of Figure6 and whose only constraint
is the diagram shown in the center. The derived edgeu ◦ r
connects each person to his or her elected representative.
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Fig. 6. The two-vertex graphG (left) together with the diagramD (center)
generate the theoryT1 (right). The graph and diagram form a sketchS1.

E. Alignment

A body of knowledge may be presented in different ways
even within a fixed formalism (e.g., ontologies or sketches).
People use terms differently and use different words to describe
the same concepts. The notion of theory of a sketch provides
a framework for formulating the alignment problem. Consider
the elected officials example discussed above. An alternative
presentation is shown in Figure7. This sketch has only a
single vertexC that represents a class of citizens. It has a
single edgee that represents the connection of each citizen to
his or her elected official. The semantic constraint (indicated
by the center diagram) again asserts that each elected official
represents himself or herself. The theory generated by this
sketch has one vertex and two edges. It is shown below right.
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Fig. 7. An alternative formulation of the knowledge model shown in Figure6.
The one-vertex graphG (left) together with the diagramD (center) generates
the theoryT2 (right). The graph and diagram form a sketchS2.

We seek to align these two formulations of the same
concepts. To do this we can not use the presentationsS1 andS2

themselves. We must use theories. Although we can identify
the vertexP of the S1 with the vertexC of S2, the problem
is that there is no edge inS1 that corresponds to the edgee
of S2. The appropriate edge occurs in the theoryT1 of S1 not
in the sketchS1 itself. Figure8 illustrates how the alignment
problem is formulated using sketches. The task is to find a
sketchV and sketch maps into the theories generated by the
two presentations that we seek to align.V can be construed as
the overlap between the two theories. It is a view (as defined
in the next section) of both presentations.
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{{

{{
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m2 !!C
CC

CC
CC

S2

��
T1 T2

Fig. 8. Formulation of the alignment problem using sketches. To align
presentationsS1 andS2 (i.e., sketches or ontologies), we compute a sketch
V and mapsm1 andm2 into the theories generated by the presentations.

The sketch framework supports an operation calledpushout
which is essentially the union accounting for overlaps between
sketches. With this union operation we can align the two
presentations that we have been discussing into a single
knowledge representationT . Figure 9 shows the resulting

S1
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T1

%%JJJJJJ T2
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Fig. 9. Alignment of the presentations (e.g., sketches or ontologies)S1 and
S2 into the common knowledge representationT using the union (pushout)
operation on sketches.

sketches and maps. This illustrates a particular case of the
data alignment step shown at the top left of Figure1.

The need to use structures generated from the available
presentations, rather than using the presentations alone,is
evident in the alignment example discussed in Chapter 10
of [14]. In this example, two OWL ontologies are aligned using
OWL statements. The first ontology is defined below.

ex1:Mother rdfs:subClassOf ex1:HomeDweller.
ex1:Father rdfs:subClassOf ex1:HomeDweller.
ex1:Son rdfs:subClassOf ex1:HomeDweller.
ex1:Daughter rdfs:subClassOf ex1:HomeDweller.
ex1:hasChild rdf:type owl:ObjectProperty.
ex1:hasSon rdfs:subPropertyOf ex1:hasChild.
ex1:hasDaughter rdfs:subPropertyOf ex1:hasChild.

The second is defined with prefixex2. It overlaps with but is
visibly not equivalent to the first.

ex1:Relative rdf:type owl:class.
ex1:Mother rdfs:subClassOf ex1:Relative.
ex1:Father rdfs:subClassOf ex1:Relative.
ex1:Child rdfs:subClassOf ex1:Relative.
ex1:hasParent rdfs:type owl:ObjectProperty.

We align the two using the OWL statements below.

ex1:Mother owl:equivalentClass ex2:Mother.
ex1:Father owl:equivalentClass ex2:Father.
ex1:Son rdfs:subclassOf ex2:Child.
ex1:Daugher rdfs:subclassOf ex2:Child.
ex1:hasChild owl:inverseOf ex2:hasParent.

Although theMother andFather classes coincide, there
are no appropriate classes inex2 to identify with ex1:Son
or ex1:Daughter. The classes occur in a knowledge rep-
resentation generated byex2 not in ex2 itself. Similarly,
ex1:hasChild andex2:hasParent have no corresponding
element in the other’s ontology. They are identified with
elements constructed from the other.

F. Contexts and Views

Decision making uses both general knowledge and specifics
of the decision space to balance the expected costs and risks
of a program of actions. It focuses on the components that
are most relevant to a mission, its goals and tasks. It must
efficiently and effectively manage the available data.

Context carries information about intent. Views are imple-
mentations of context in a knowledge representation. Aviewof
a database is derived using a query. In SQL implementations,
a view is typically a single (virtual) table. Theview update
problemaddresses the question of how to determine an appro-
priate update to the state of the total database when a view



is modified. The influential paper [1] developed theconstant
complementapproach to view updates. [4], [12] defined the
notion of lens that characterized a class of updates. At about
the same time, [15] describedupdate strategiesfor particular
update classes. Sketches were introduced into the study of data
semantics in order to better understand database dynamics;in
particular, the view update problem [24]. [19] uses sketches to
extend the lens concept and classes of view update strategies.

Within the sketch data model, views are particular sketch
maps and, in general, are much more expressive than a single
derived table. Specifically, a view of a knowledge representa-
tion S is a sketchV together with a sketch map

V // T

where T is the theory generated byS (see SectionII-D).
Consider, for example, the human terrain sketch shown in
Figure 2. One view of interest is obtained by restricting the
SeenIn relation to the subrelation in which the village is one
in which coalition personnel are based. This view involves
subclasses of each of the classes (in addition to the subrelation
of SeenIn that we mentioned). None of these subclasses occur
in the sketch itself but they are generated by applying cone
and cocone constraints.

A challenge to implementing this framework in a decision-
making context is using the available event history and other
context-specific data to construct an appropriate sketch view in
a semi-autonomous manner. The graphical nature of sketches
may facilitate the adaptation of recent techniques developed
for context sensitive Internet search [6], [16], [21], [28] that
use the graph structure of the Web.

G. Support forn-ary Relations

A limitation of OWL/RDF described by practitioners is its
lack of direct support for representingn-ary relations. Such
properties can be represented directly in sketches. To express
a relationR that may hold amongn entities that have types
A1, · · · , An, we introduce vertices for each of thesen + 1
classes and we includen edgesR → Ai. Any axioms that the
relation is intended to satisfy would then be formulated using
diagrams, cones and cocones.

R

A1 · · · An

Fig. 10. Sketch for ann-ary relationR among entities of typesA1, . . . , An

III. L OGICAL INFERENCE

The graphical nature of the sketch data model supports
implementation of pattern-matching reasoning capabilities that
emulate the process of experienced decision makers [23].
In classical logic, we express properties and relationships
as terms and formulas that are recursively-constructed from
basic components. Inference is formulated as rules for deriving
valid expressions. Like models of physical phenomena, logics
are developed with varying levels of fidelity based on their
intended applications. Examples include classical, descriptive,
modal and linear logics. Expressiveness, however, comes at
the expense of higher computational complexity: inferencefor

first-order logic is undecidable, NP-complete for propositional
logic, and P-complete and linear for propositional Horn logic
(a property exploited in the Prolog language) [26].

A sketch is an alternative, graphical way of presenting a
logical theory [2], [20]. In the sketch data model, we express
relationships using diagrams, cones and cocones in directed
graphs instead of with formulas and terms. Logical inference
employs graph properties associated with constraints. A sketch
with no constraints is like a logical signature with no axioms.

Q M(P )

M(A)

M(B)

M(C)pb

Fig. 11. Universal mapping property that characterizes pullback cones

A pullback cone, for example, is characterized by the property
illustrated in Figure11 which shows a modelM of such a
constraint (see [2]). If the two outer functions fromQ toM(C)
are equal, then there is a unique function fromQ to M(P )
for which the two paths fromQ to M(A) are equal as are
the two fromQ to M(B). Such graph definitions are called
universal mapping properties[22]. From these we derive other
inference rules such as: If the function fromM(B) toM(C) is
a subtype (is a) relationship, then so is the edge fromM(P )
to M(A) [22].

Sketches, like logics, are developed with varying levels
of fidelity. Linear sketches are the least expressive. Finite
limit, finite sum, EA (entity-attribute) and mixed sketchesare
richer. Despite the distinct character of logical and sketch-
based inference, they share deep connections. For various
classes of sketches, there are algorithms for constructing
logical theories that have equivalent categories of models(see
D.2.2 of [20]). Reasoning about a knowledge model expressed
as a sketch, therefore, may be achieved either directly using
the computational category theory techniques discussed below
in IV or indirectly by converting to a first-order theory and
using a predicate calculus reasoner.

The problem of pattern-based reasoning with sketches is
similar to the ontology alignment problem [18] that is solved
mathematically via thetheory (or syntactic category) of a
sketch [20]. We may align, for example, the human terrain
sketches that are shown in Figures13 and2 via a sketch map
from the latter to the former. Refinement of the knowledge
base to represent levels in a tribal hierarchy (e.g., ethnic
groups, tribes, clans and factions) is accomplished with a
sketch map from the Figure2 sketch to a new sketch that
would include additional edges and constraints. The simple
business knowledge representation shown in Figure12 can be
mapped to a sub-sketch of our human terrain model.

IV. SOFTWARE INFRASTRUCTURE

The software infrastructure available for working with
sketches is meager relative to that associated for other semantic
models (e.g., OWL/RDF). The Easik tool1 is the most mature.

1http://mathcs.mta.ca/research/rosebrugh/Easik

http://mathcs.mta.ca/research/rosebrugh/Easik


Employee

C
on

su
lta

nt

F
ul

l-T
im

e

Division

Office

assignedto

ho
m

e
of

works at

Fig. 12. Part of a sketch representing business structure knowledge

It provides a graphical interface for building a collectionof
sketches and views. It implements procedures for reading and
writing sketches to and from XML and SQL files. It also
provides an interface to models maintained in PostgreSQL
and MySQL databases. Easik does not implement a reasoning
engine. Figure13 shows a sketch that is similar to the one
whose graph is shown in Figure2. It was developed using
Easik. The screen shot illustrates convenient abbreviations for
various semantic constraints. The decorated arrows to Person,
for example, indicate subtype relationships. These are imple-
mented as cones. Vertices connected to the+ symbol form
a kind of cocone. Its base consists of the vertices Coalition,
Foreign and Resident. The paths connected to CD indicate a
diagram constraint.

Fig. 13. Human terrain sketch implemented using the Easik software tool

Category theory, despite its abstract nature, is highly
computational. All semantic constraints, for example, canbe
computed from four basic types: cones can be expressed
using product cones and equalizer cones; cocones can be
expressed using coproducts and coequalizers. One freely-
available implementation of these and related computations
is written in the ML programming language and is described
in [25]. This work and similar research activities could provide
a basis for implementing a reasoning engine for a sketch-based
information system.

If the only constraints of the sketch are diagrams (i.e., the
sketch has neither cones nor cocones), then the theoryT (when
T is, in fact, finite) generated by the sketch may be computed
via the left Kan extension algorithm which generalizes the
Todd-Coxeter procedure from group theory [7], [27]. If the
generated sketch is infinite, the algorithm, of course, doesnot
terminate. Its complexity in the cases when it does terminate
has not been characterized and is highly sensitive to small
variations in the sketch [5].

V. I MPLEMENTING SKETCH MODELS IN DATABASES

Features available in major relational database systems in-
cluding PostgreSQL and MySQL provide an interface between
the mathematical theory of sketches and their application.

The Easik tool supports read and write operations between
knowledge representations and XML files, SQL files and SQL
(MySQL or PostgreSQL) database connections. In Easik, a
sketch is implemented as adatabase schema. Each sketch
entity (graph node) is atablecreated according to the schema.
Values that populate the tables form a model of the sketch.
Each table has an implicit, integer-valued primary key. In
general, a primary key constraint on a table expresses the fact
that the values in one or more columns together are a unique
identifier of a row. This does not preclude the possibility
that two rows may refer, for example, to a single individual.
Attributes are table columns. For example, an entityB with
no attributes or outgoing edges is implemented in PostgreSQL
as follows where theid column is an automatically-generated
(i.e., SERIAL), key.

CREATE TABLE B ( id SERIAL PRIMARY KEY );

A foreign keyconstraint specifies that the values in one
or more columns must match the values occurring in some
row of another table. We implement a sketch edgeA

e
−→ B

as a foreign key contained in theA-table and referencing the
primary key of theB-table. In PostgreSQL this is expressed
as follows.

CREATE TABLE A ( id SERIAL PRIMARY KEY,
e INTEGER NOT NULL REFERENCES
B (id) ON DELETE CASCADE

ON UPDATE CASCADE );

Insertion of a row into theA-table, therefore, involves
specifying values for the columns that are introduced into that
table for the edges having domainA. Deletion of aB-row
can impact theA-table if anA-row references theB-row via
the edgeA

e
−→ B. Foreign keys serve to implement relations

(object properties) in the sketch data model since a relation is
simply an entity having edges to the nodes that correspond to
the types of its participants.

Although subtype relations (monic edges) are a particular
kind of cone constraint, they can be implemented as foreign
keys with unique references in the codomain table. In general,
however, sketch constraints are implemented using triggers.
A trigger for a database table or view executes a specified
function whenever certain events occur. The simple diagram
shown in Figure14, for example, asserts that semantics of the
composite edgef followed by g should equal that ofh. In
PostgreSQL we express this as follows.

CREATE FUNCTION commutativeDiagram0()
RETURNS trigger AS $commutativeDiagram0$

DECLARE _cdTarget1 CONSTANT INTEGER := NEW.h;
_cdTarget2 CONSTANT INTEGER :=

(SELECT B.g FROM B
WHERE B.id = NEW.f);

BEGIN IF _cdTarget1 IS DISTINCT
FROM _cdTarget2

THEN RAISE EXCEPTION
’Commutative diagram constraint
failure’;

END IF;
RETURN NEW;

END;
$commutativeDiagram0$ LANGUAGE plpgsql;
CREATE TRIGGER commutativeDiagram0

BEFORE INSERT ON A
FOR EACH ROW EXECUTE
PROCEDURE commutativeDiagram0();



It is a trigger that fires before insertion of a row into
the A-table to confirm that the values entered in the foreign
key columns forf andh satisfy the commutativity constraint
taking into account the value in theg-column in an appro-
priate row of theB-table. Cone and cocone constraints are
all similarly implemented. All EA sketch constraints can be
constructed from these [22].

AB

C

f

hg

cd

Fig. 14. Diagram to implement using a SQL trigger

A research question that arises is how might one utilize the
sketch data model in a context of large-scale, distributed data.
Broader demand for a scalable system that supports views and
integrity constraints are well-known. Megastore, Tenzing, and
Spanner are Google products developed to meet this demand.
Apache Cassandra is an open-source alternative.

VI. CONCLUSION

OWL/RDF and related semantic web technologies have
established tenable positions in the intelligence, defense and
security domains. The sketch data model, however, integrates a
variety of features that can be leveraged. These include itsdeep
connections with infinitary predicate logic, the ability toimple-
ment sketches and their models using major relational database
systems, its graphical nature and, perhaps most significantly,
its sophisticated notion of view of an information system. It
is possible to formulate OWL constructs using sketches. The
classes of sketches that can be expressed in the dialects of
OWL2 is an open question. We have illustrated these concepts
and their application to a simple ontology alignment problem.

The sketch data model also clarifies the formulation of cer-
tain challenges that we encounter in applications of OWL/RDF.
In the sketch approach, uncertainty and lack of informationare
aspects of models of the sketch. They are not features of the
knowledge representation itself. Moreover, sketches (andOWL
ontologies) are more appropriately construed as presentations
of the larger bodies of knowledge that they generate. In sketch
theory, this larger knowledge base is called the theory of
a sketch. Except in simple cases of renaming, alignment of
presentations involves maps into theories. The extent to which
procedures for generating a theory from a sketch can support
partial-automation of alignment problems is an open research
question.

Finally, the concept of view of a knowledge representation
is formulated as a sketch map to a theory. This generalizes the
notion of view of a database. Recent techniques developed for
context sensitive Internet search exploit the graph structure of
the Web and search histories. The extent to which these tech-
niques and the graphical nature of sketches can be exploitedto
support semi-automated extraction of context-relevant views of
a knowledge representation is another open research challenge.
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