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Abstract—The mathematical theory of sketches provides a aligning knowledge models that differ due to simple renamin
graphical framework for describing and relating knowledge and more complex reformulations of concepts.
representations and their models. Maps between sketches rca
extract domain-specific context from a sketch, express kndedge Examples of knowledge representations include relational
dynamics and be used to manage representations created for algebra and its implementation in database languages (such
distinct applications or by different analysts. There are pecise  as SQL), entity-relation-attribute diagrams, ontologidata
connections between classes of sketches and fragments obffir  specifications and sketches. Our interest in the latterlteesu
order, infinitary predicate logic. EA sketches are a particuar class  from its graphical nature, deep connections between sketch
that is related to entity-attribute-relation diagrams and can be  nagry and logic and a rich notion of contextual view of a
implemented using features available in many relational deabase sketch. Sketch theory has proved to be a valuable tool in

systems. In this paper we illustrate sketch theory through ével- - - .
opment of a simple human terrain model. We apply the theory to mathematical logic and the theory of computer programming

an example of aligning sketch-based knowledge representans languages. Its relationship to oth_er semantic technadpgie
and compare the approach to one using OWL/RDF. We describe therefore, warrants further exploration.
the computational infrastructure that is available for working

with sketches and outline research challenges. The purpose of this paper is to introduce the sketch data

model to researchers and practitioners of other semaatiee
technologies and to describe a program for its applicatidga.
. INTRODUCTION seek to give an overview of the theory through discussion
_ and examples without focusing on the mathematical details.
We use the ternmknowledge representatioto refer to a  The following themes emerge. (1) An ontology or sketch
mathematical model of the concepts that we use to Undeﬂstang a presentationof know|edge_ Different presentations of
reason about and navigate our environment. It evolves ifhe same knowledge are possible. Ttmeory of a sketch
response to new experiences, concept formulation and thg the formal mathematical object that such presentations
mission at hand. Ownership, membership, amicability, fEeop generate. (2) Alignment of distinct knowledge represéonat
and plans are examples of interrelated entities in this o&tw and derivation of views of particular ones are more appro-
We usedecision spaceo refer to a sets of individuals and priately formulated using theories than presentationsTtg
relationships that our knowledge representation organidéis  sketch model emphasizes the distinction between a knoeledg
space is more dynamic, densely populated and uncertain thapresentation and its models. Instances, incompletearabs
the knowledge representation. The concept of ownership, foyncertainty may be more appropriately incorporated in rode
example, encompasses a list of ephemeral connectionsdetwerather than in knowledge representations themselves. tfd) T
individuals and their possessions. Our understanding oBow  software infrastructure available for working with sketsh
ship persists while instances of this relationship comegmd currently is meager compared to that which has been dewetlope

Moreover, different people can share a common understgndinaround other semantic technologies such as OWL/RDF.
of ownership even if the instances of this relationship that

they observe have little or no overlap. They apply the same _
knowledge representation to distinct models. A. Concept of Operations

Different knowledge representations may characterize the Figurel illustrates an example concept of operations that
same concept in distinct ways. Renaming the concept ‘ownsnoWs how the sketch data model might be used in a decision
ership’ as Eigentum or propriété, for example, resultsain SUPPOrt system. Later in this paper we discuss details oicpar
new presentation of the concept. A complex idea may, moré"ar aspects of the data pipeline. Data from distributedcssi
generally, be decomposed into distinct, simpler concepts b!S marshaled into local data modefsthat are expressed as
different people. Finally, as we build a knowledge model toSketches. The local sketches are al|g.ned using sketch mitaps i
organize our observations of a greater range of phenomen@ common parerif” called atheory. 7 is the sketch generated

we frequently derive and extract parts of it that are suitabl PY the local sketches taking into account potential overlap
for context-based reasoning about particular situations. Parent sketches evolve over time as local ones are modified

and new data sources come online. Within a particular nmssio
A mathematical formulation of knowledge should dis- context, a view) of the system knowledge representation
tinguish between the knowledge representation and decisiol is extracted. The problem of mathematically charactegizin
space models. It should support evolution of the former andhe context from event and decision histories is a challengi
the dynamics and uncertainty that are characteristics ®f thone and is an active area of research for applications such
latter. The mathematical framework should support dedwat as Internet search. Aiew is then a sketch equipped with a
of context-specific views of a knowledge representation andketch map into the current parent theory. Models of skatche
a decision space. Finally, it should provide mechanisms fofincluding views) are distinct from the sketches themszlve



They include the observed instances that populate theedasssketch of human terrain knowledge. The vertices Person, For
and relations that symbols in the sketch represent. Urinerta eign, Coalition, Resident, Village and TribalElement et
ties and partial information are accounted for in the modei, classes of entities. Individuals who populate these ctasse
in the sketch. Data artifacts relevant to a view are analyaed are typically not represented & (although it is possible
estimate statistical metrics for potential future stakdgurel  to include them explicitly). They instead occur in semantic
is conceptual and necessarily incomplete. It does not stoow, models of the sketch and may be realized as, for example,
example, the roles of user interface components, visualiza rows in database tables. The Seenln vertex representgiamela
tools and query and reasoning engines, nor of event anbetween the two classes to which it has edges. It repredants t
decision history archives which would be built into a realsituation in which foreigners may be observed in one or more
command decision system. local villages. Instances of this relation, like individsiavho
populate the classes, occur in models of the sketch instead o

data data being represented in the sketch itself.
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Intuitively, the edges ofs represent functions. As we dis-
¢ i i cuss below, however, edges may model incomplete or ungertai
/I\’\ /I/\ J/\ cost/rewarg information. We intend the edge from Resident to Village, fo
volatility example, to model a situation in which each resident of an
Decisi - sketch model area of interest is associated with a unique home villageh Ea
ecision spaces: sketch models instance of the class represented by the Coalition vertex is

to be based in a specified village. Moreover, each village is
settled by a unique tribal element. The two edges from Seenln
represent the process of identifying a foreigner and agélla

in which he or she was observed. Multiple or no observations
of a particular individual are possible. Note that in a sketc
relations (properties) are modeled by vertices rather duayes

Eil e?]%teer%O% dthMeg(r:yL;sn : ir:n t%tg ellgzggatlo f:ﬁgjn ;gtéq[?;r? sflcj)rrtr)é?—s is the idiom in OWL/RDF. A relation vertex, however, is the

tions between certain geometric and algebraic structitregw tomain of edges that specify the types of entities that kslin

explosive growth after Kan discovered the unifying conceptThat is, the types of the variables that occur as the domain an

of adjointsin 1958 R2]. During subsequent decades it has range of (binary) relations must be specified.

been applied across diverse areas of computer science and Various features of the human terrain that we seek to
mathematics including statistic®][ linguistics [8], dynamic  represent are not captured by the graph alone. We expresss the
systems, semantics of programming languag&stppology  using extra structures callatiagrams conesand coconesin
and, in particular, logic 0] where it provides a non-set- Sectionll-A below we give a general discussion of the way in
theoretic foundation for mathematics. The theory of skesch which these constraints are specified using graph mapsisin th
is a subdomain of category theory developed by C. Ehresmangaper we describe examples of how these concepts are used
in 1968 [L1]. It was almost exclusively a tool of the French but do not define them precisely. For details, sge [

school of category-theorists until publication df],[ [3]. A ) : . . ) .

category is a collection afbjects(e.g., sets, probability spaces 1 he triangle involving Resident, Village and TribalElerhen
or vector spaces) and maps between them (e.g., functionS, @1 example of aiagram It expresses the intuition that the
stochastic matrices or linear transformations). In thipeua tribal element of a residen® should coincide with the tribal

we use categories to construct models of sketches. Sketchl§ment that has settled the village in whiéhlives. This
themselves form a category having rich structurd.[ semantics is |mp_osed on models of the sketqh by including

an appropriate diagram in the sketch constraints and by the
mathematical definition of sketch model. The constraint can
be implemented, for example, using database triggers if the
"pstances are stored in database tables.

Fig. 1. Concept of operations for the sketch data model

B. Historical Background

Il. SKETCHES, MODELS AND MAPS

A sketch is a graph-based knowledge representation.
consists of an underlying directed gragh together with The Foreign, Coalition and Resident classes are to be
extra structures that impose semantic constraints on modelconstrued as subclasses of Person. Again, this intent is not
Figure 2 shows part of the underlying graph of a simple captured by the graph alone. We express subtype relations by



including particularconeconstraints in our formulation of the B. Semantic Models of Sketches
sketch. One such cone would be included for each of the three
subtypes that occurs in Figui Cones, like diagrams and
cocones, impose mathematical requirements on models.

Individuals who populate the classes of a sketch are not
typically represented in the sketch itself. They are elemen
of modelsof the sketch. As we discuss below, this framework
Finally, we may intend the classes Foreign, Coalition ancFlarifies the distinction between the syntax of a knowledge
Resident to be mutually exclusive and to exhaust the passibrepresentation and its semantics. We can use this forroolati
classifications of Person instances. This feature is nducagy ~ to introduce partiality (i.e., missing data) and uncetainto
by the graph but can be included in the sketch using threesconénodels rather than requiring these features to be part of the
(to assert the subtype constraints) andoaoneto assert the syntax. First, however, we describe deterministic, ssetla
disjoint union constraint. models. A (set-basedjodel of a graphG is an assignment
of a setM (v) to each vertexw of G and a functionM (e) :
M(A) — M(B) to each edge : A — B of G. There are no
A. Sketch Maps further restrictions on models of a graph.

A map H — G from a graphH to a graphG is a pair A model of a sketcl$ is a model of its underlying graph
of functions that assigns @ vertex to eachH vertex and a G that satisfies the restrictions that are represented by the
G edge to eachd edge in a way that respects the sourceconstraints (diagrams, cones and coconesy.a this paper
and target information for edges in the two graphs. Graphwe seek to give an overview of the theory and do not give a
maps play important roles in defining and applying sketchesprecise definition of these constraints or their semankos.
First, each of the three types of semantic constraints (diag, details, seeq]. Figure 3 shows a model of a fragment of the
cones and cocones) is defined as a type of graph map fromrauman terrain sketch that was shown in Figlr&he Resident

base grapiB to the underlying grapldz of the sketch. and TribalElement vertices are interpreted as sets ofrineta
The edge labeled ‘has’ is interpreted as a function between
B——G the sets. To constitute a model of the sketch, the functional

) o ) interpretations of the edges lives and settlecboy must be
The three classes of constraints are distinguished by #18esh  consistent with that of ‘has’.

of their base graphs. Second, maps between sketches are

defined to be maps between the underlying graphs that peeserv Amina
the semantic constraints. To illustrate this idea, obs#@raea FaysaH—— |
graph map Bashir
G—=G' Sai
between the underlying graphs of two sketck®sand S’ M (Residenf————- M (TribalElemen}

M (hasg

Fig. 3. Functional model of a fragment of the sketch shownigufe 2.

converts eaclks constraintB — G into a graph map
B—G——=G

via composition of graph maps. & — G is a sketch map, By varying the semantic category in which sketch models
then this composite is also aff constraint. Maps between take their values, we may represent lack of information and
sketches give a rigorous, general framework for addressingncertainty. The edges of the underlying graph may, for
knowledge model dynamics, alignment and views. For examexample, represent partial _functlons rather than totattfpns.
ple, if a knowledge mode$’ subsumes another mods| we Recall that a partial function from a séf to a setY is a

can express this fact using a sketch map. function X’ — Y for some subset ok and that composition
g o f of partial functions is associative (like composition of
S——=g total functions) and is defined by further restricting thendin

of f. Figure4 shows a partial function model of a fragment of
Not every sketch map expresses a parent-child relationshiphe human terrain sketch that was shown in Figlirén this
however. Those that do are called monomorphisms and satisBxample, the tribal element membership of Faysal is unknown
a condition that generalizes the notion of a one-to-onetfanc

A sketch map can, alternatively, merge distinct vertices or Amina hulbahants

edges to eliminate redundancy such as equivalent classes th Faysal Dhulbahantd

have been given distinct names. Bashi Isaaq
Alignment of intersecting sketche& andS, in a common Sai > Darod

parentS is expressed by the following diagram of sketch maps M(Resideny M(TribalElemen}

S M (has
S / \ S Fig. 4. Partial functional model of a fragment of the Fig@reketch.
1 2
0
In Figure5 we illustrate a probabilistic model of the edge
where S, is a sketch representing the intersection of the twohas’ that occurred in Figur@. In this model, each point of
knowledge models. We discuss an example in Sedtiéh the source object (which for ‘has’ is the sé&f (Resideny)



is mapped to a probability function on the target object (theThe definition of map between models requires the two paths
set M (TribalElemen} in this case). That is, in this semantic to define the same function. That is, the village of a resident
category, edges are interpreted as stochastic matriceés (atho occurs in both models should be the same in both models.
entries are non-negative and columns sum)toComposition  Of course, not every map of models represents an extension or
is matrix multiplication. subsumption relationship. As with alignment of sketches, w
can express alignments of models using maps. For example,
alignment of intersecting model&/; and M in a common
parent M is expressed by the following diagram of model

Aminaf——-_
FaysaH— 1 o

Bashir 1.0 —1 maps wherel], is a model representing the intersection.
Said—{
M (Resident———— M (TribalElemen} M
M(ha3 Ml / \ M2
Fig. 5. Probabilistic model of a fragment of the Figieketch. \ M /
0

There is arich literature investigating classes of sketcag
distinguished by the types of semantic constraints theuit®; D. Presentations and Theories
and classes of semantic models. Examples include linege, fin
product, finite limit, EA (entity-attribute) and mixed skées. A sketch (or an OWL ontology) is a compguiesentation
The expressiveness of the class of sketch imposes requiteme of the much larger body of knowleddEg that it generates. For
on the classes of structures that may be employed in semantikample, if an ontology defines a clads a subclassA’ of
models. Just as various OWL dialects are associated withl and a propertyP that is defined o, then we can derive
different fragments of the predicate calculus, so too aaesels  a subpropertyP’ by restricting P to A’. This restrictionP’

of sketches. may or may not be explicitly defined in the ontology. It is
part of the larger body of knowledgg that the ontology is
C. Maps of Models designed to present. Sketch theory defines and provides tool

The theory of sketches also provides a notion of mapdor analyzing this generated body of knowledge.

between semantic models. We call thesedel mapsThey .
can be used to represent model dynamics, comparisons and 'netheory7 of a sketchS is the sketch thas generates

combinations. For example, the fact that different peopld?y recursive application of the constructions supported by

may populate our tabulations of the Resident class that i41€ YPe of sketch. These constructions can include prppert
represented by the corresponding vertex of Figiirshould ~ chains (i.e., composition), property inverses (i.e., pemals),
not require us to change the syntax of our knowledge repifesei?roperty restrictions, products (ordered pairs) and csipees
tation. In other words, our understanding of the concepts an{unions) of classes, and extraction of subclasses and Gpropr

relationships of the human terrain does not necessarilggia erties. The constructions are specified as types of diagrams
when we observe a new individual to add to our informationcONes and cocones since these are the concepts used ty specif
system. This modular approach to information and knowledg€€Mantic constraints in sketcheg. is usually much larger

management is a strength of the sketch framework. than S. It can be infinite even iiS is finite. Co_nsequently,
when we write down a knowledge representation, we almost

As with models themselves, model maps can introducever write down7. We formulate a presentatiaf instead.
partiality and uncertainty. We focus on deterministic maps

Let M and M’ be models of a sketcls. For each vertex In Figure6 we compute a small example. The underlying
v of S, the models have corresponding séfgv) and M’(v)  graph G of the sketch has two vertices and two edges.
of individuals. A mapr from M to M’ is a collection of To make the example a bit more concrete, assume Fhat
functions M(v) === M/( represents a class of people afidepresents a class of elected
v v) officials who serve political districts. The edgerepresents
between these sets of instances. In order to be a map of mode#$ assignment of elected officials to people whilelentifies
these functions must be consistent with the functions in th&lected officials as particular instances of people. We sapo
models themselves that arise from edges in the underlyingne semantic constraint: the property chain (composite:)
sketch graph. Two model®/ and M’ of the Figure2 sketch, of the two edges indicated in the triangle should coincidi wi
for example, each have associated sets of Resident and@/illathe identity function on elected officials. That is, eactctdd
instances. If\/’ subsumesg/ by, for example, adding new res- official serves his or her own political district. The finiteagh
idents, then the new model should maintain the data about th@ could, potentially, generate an infinite family of property
previously-known residents. This is expressed by theiolg ~ chainsir ou, uor, uorowu, rouor, etc. The semantic
diagram in which we use to denote the two functionsyiiage constraint has the effect of truncating this list so thatdhéy

and Tresident distinct properties are those shown in the path graph on the
. - . right side of Figures. The path graph is the underlying graph
M (Resident —— M’(Resident of the theory7; of the sketchS; whose underlying graph is
M(,i\,es_in)l lM/(H\,eS in) shown on the left side of Figuré and whose only constraint
h is the diagram shown in the center. The derived edger

M (Village) —— M’(Village) connects each person to his or her elected representative.
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Fig. 6. The two-vertex graply (left) together with the diagran® (center) \ T/

generate the theory; (right). The graph and diagram form a sketSh.

Fig. 9. Alignment of the presentations (e.g., sketches ¢wlogies)S; and
S2 into the common knowledge representatinusing the union (pushout)

. operation on sketches.
E. Alignment P

A body of knowledge may be presented in different ways
even within a fixed formalism (e.g., ontologies or sketches)sketches and maps. This illustrates a particular case of the
People use terms differently and use different words torilesc  data alignment step shown at the top left of Figlire
the same concepts. The notion of theory of a sketch provides
a framework for formulating the alignment problem. Conside

the elected officials example discussed above. An alteeati evident in the alignment example discussed in Chapter 10

presentation is shown in Figuré This sketch has only a of [14]. In this example, two OWL ontologies are aligned using

single vertexC' that represents a class of citizens. It has 8OWL statements. The first ontology is defined below,
single edge: that represents the connection of each citizen to ' y '

The need to use structures generated from the available
presentations, rather than using the presentations aisne,

his or her elected official. The semantic constraint (ingida ex1: Mt her rdfs: subd assOf ex1: HomeDwel | er.
by the center diagram) again asserts that each electedabfficie*1: Fat her rdfs: subd assCf ex1: HomeDwel I er.
ts himself or herself. The theory generated by thi&~: " rdfs: subd asscf ex1: HomeDwel | er.
represen : _y g y_ 21 Daught er rdf s: subd assOf ex1l: HoneDwel | er.
sketch has one vertex and two edges. It is shown below rightx1: haschil d rdf:type ow : Obj ect Property.
id ex1: hasSon rdf s: subPropertyOf ex1: hasChil d.
e ex1l: hasDaught er rdfs: subPropertyt ex1: hasChil d.
C c O
C x le c The second is defined with prefex2. It overlaps with but is
Q C 9 visibly not equivalent to the first.
e
Fig. 7. An alternative formulation of the knowledge modebwh in Figure6. exl: Rel ative raf: pre Q\M : ! ass.
- h ex1: Mot her rdf s: subCd assOf ex1l: Rel ati ve.
The one-vertex grapty (left) together with the diagran (center) generates . . . ;
he th iah h h and di ¢ K ex1: Fat her rdf s: subCd assOf ex1l: Rel ati ve.
the theory7s (right). The graph and diagram form a sketh. ex1: Child rdf s: subCl assOf ex1: Rel ati ve.
ex1: hasPar ent rdf s:type ow : Obj ect Property.

We seek to align these two formulations of the sameWe align the two using the OWL statements below.
concepts. To do this we can not use the presentafipradS,

) - . ex1: Mot her ow : equi val ent d ass ex2: Mbt her.
themselves. We must use theories. Although we can identifgx1: Father  ow : equi val ent d ass ex2: Fat her.
the vertexP of the S; with the vertexC' of S, the problem  ex1: Son rdf s: subcl assOf ex2: Child.
is that there is no edge if; that corresponds to the edge ©x1: Daugher rdfs:subcl assc ex2: Chil d.

ex1l: hasChild ow :inverseCO ex2: hasParent.

of S,. The appropriate edge occurs in the the@ryof S; not
in the sketchsS; itself. Figure8 illustrates how the alignment o
problem is formulated using sketches. The task is to find a _Although the_lv?t h?r and Ea;hter _é:las:{'_ses q?r:nC|ci§,Sthere
sketch) and sketch maps into the theories generated by th8® n(l). aDgpr(;pna e_IE:hassles @n2 to identify WIL e)l( q on
two presentations that we seek to alighcan be construed as OF 8X1:Daughter. The classes occur In a knowledge rep-

the overlap between the two theories. It is a view (as defineffSentation generated byx2 not in ex2 itself. Similarly,
in the next section) of both presentations. ex1: hasChi | d andex2: hasPar ent have no corresponding

element in the other’s ontology. They are identified with
elements constructed from the other.

S1 % So
l A & l F. Contexts and Views
T T2

Decision making uses both general knowledge and specifics
, _ _ _ _ of the decision space to balance the expected costs and risks
Fig. 8. Formulation of the alignment problem using sketchBs align  of 5 program of actions. It focuses on the components that
presentationsS; and Sz (i.e., sketches or ontologies), we compute a sketch | - . | d ks. |
VY and mapsn; andmsg into the theories generated by the presentations. are_ _mOSt relevant t(? a mission, Its goas and tasks. It must
efficiently and effectively manage the available data.

Context carries information about intent. Views are imple-
The sketch framework supports an operation cgheshout mentations of context in a knowledge representationieiv of
which is essentially the union accounting for overlaps leettv  a database is derived using a query. In SQL implementations,
sketches. With this union operation we can align the twoa view is typically a single (virtual) table. Theéiew update
presentations that we have been discussing into a singlgroblemaddresses the question of how to determine an appro-
knowledge representatiofi. Figure 9 shows the resulting priate update to the state of the total database when a view



is modified. The influential papef] developed theconstant first-order logic is undecidable, NP-complete for progositl
complementapproach to view updatesd][ [12] defined the logic, and P-complete and linear for propositional Hornidog
notion of lensthat characterized a class of updates. At aboufa property exploited in the Prolog languagep||

the same time,1[5] describedupdate strategieor particular
update classes. Sketches were introduced into the stuchtaf d
semantics in order to better understand database dynamics;
particular, the view update probler24]. [19] uses sketches to
extend the lens concept and classes of view update strategi

A sketch is an alternative, graphical way of presenting a
logical theory P, [20]. In the sketch data model, we express
relationships using diagrams, cones and cocones in difecte
é;;raphs instead of with formulas and terms. Logical infeeenc
employs graph properties associated with constraints.efchk

Within the sketch data model, views are particular sketchwith no constraints is like a logical signature with no axsom
maps and, in general, are much more expressive than a single

derived table. Specifically, a view of a knowledge represent M(A)

tion S is a sketchV together with a sketch map / | \
V—=T Q--~>M(P)——@——M(C)

where 7 is the theory generated by (see Sectionl-D). \ | /

Consider, for example, the human terrain sketch shown in M(B)

Figure 2. One view of interest is obtained by restricting the Fig. 11. Universal mapping property that characterizesopok cones
Seenln relation to the subrelation in which the village i€ on

in which coalition personnel are based. This view involves - :
subclasses of each of the classes (in addition to the stibrela A pullback cone, for example, is characterized by the prigper

of Seenln that we mentioned). None of these subclasses Occi(lijlgstrat(_ad in Figure1l which shows a model of such a
in the sketch itself but they are generated by applying con nstraint (see7). If the two outer functions fron@ to M(C')

and cocone constraints Gre equal, then there is a unique function frginto M (P)
: for which the two paths fron@) to M (A) are equal as are
A challenge to implementing this framework in a decision-the two from@ to M (B). Such graph definitions are called
making context is using the available event history and rotheuniversal mapping propertid2?2]. From these we derive other
context-specific data to construct an appropriate skewliri  inference rules such as: If the function frami(B) to M (C) is
a semi-autonomous manner. The graphical nature of sketchassubtypei(s_a) relationship, then so is the edge frawi(P)
may facilitate the adaptation of recent techniques dewslop to M (A) [22).
for context sensitive Internet search|,[[16], [21], [28] that

use the graph structure of the Web, Sketches, like logics, are developed with varying levels

of fidelity. Linear sketches are the least expressive. €init
. limit, finite sum, EA (entity-attribute) and mixed sketcha®
G. Support fors-ary Relations richer. Despite the distinct character of logical and dketc

A limitation of OWL/RDF described by practitioners is its based inference, they share deep connections. For various
lack of direct support for representingary relations. Such classes of sketches, there are algorithms for constructing
properties can be represented directly in sketches. Taeegpr logical theories that have equivalent categories of mogiele
a relationR that may hold among entities that have types D.2.2 of [20]). Reasoning about a knowledge model expressed
Ay, -+, A, we introduce vertices for each of theset 1 as a sketch, therefore, may be achieved either directlygusin
classes and we includeedgesRk — A,. Any axioms that the the computational category theory techniques discussiesvbe
relation is intended to satisfy would then be formulatedgsi in IV or indirectly by converting to a first-order theory and

diagrams, cones and cocones. using a predicate calculus reasoner.
The problem of pattern-based reasoning with sketches is
similar to the ontology alignment problend] that is solved
mathematically via thetheory (or syntactic categoiy of a

, _ B sketch p(]. We may align, for example, the human terrain
Fig. 10. Sketch for am-ary relationR among entities of typed, ..., An sketches that are shown in Figure3and 2 via a sketch map
from the latter to the former. Refinement of the knowledge
base to represent levels in a tribal hierarchy (e.g., ethnic
I1l. L OGICAL INFERENCE groups, tribes, clans and factions) is accomplished with a
. sketch map from the Figur@ sketch to a new sketch that
_ The graphical nature of the sketch data model supportgoyid include additional edges and constraints. The simple
implementation of pattern-matching reasoning capagdithat ) ;siness knowledge representation shown in Figirean be

emulate the process of experienced decision makegs [ mapped to a sub-sketch of our human terrain model.
In classical logic, we express properties and relatiorsship

as terms and formulas that are recursively-constructeah fro
basic components. Inference is formulated as rules fovideri

valid expressions. Like models of physical phenomenacgi  The software infrastructure available for working with
are developed with varying levels of fidelity based on theirsketches is meager relative to that associated for othearstin

intended applications. Examples include classical, d&bez,  models (e.g., OWL/RDF). The Easik téds the most mature.
modal and linear logics. Expressiveness, however, comes at

the expense of higher computational complexity: inferefioce Lhttp://mathcs.mta.ca/research/rosebrugh/Easik

IV. SOFTWAREINFRASTRUCTURE



http://mathcs.mta.ca/research/rosebrugh/Easik

Employee Division The Easik tool supports read and write operations between
knowledge representations and XML files, SQL files and SQL

O
asé\%‘\& 5 (MySQL or PostgreSQL) database connections. In Easik, a
5 2 S sketch is implemented as database scheméeEach sketch
z [ < entity (graph node) is table created according to the schema.
3 G m’ Values that populate the tables form a model of the sketch.
Each table has an implicit, integer-valued primary key. In
Fig. 12. Part of a sketch representing business structura/ledge general, a primary key constraint on a table expresses the fa

that the values in one or more columns together are a unique
identifier of a row. This does not preclude the possibility
fhat two rows may refer, for example, to a single individual.
Attributes are table columns. For example, an enbtywith

po attributes or outgoing edges is implemented in PostgteSQ

It provides a graphical interface for building a collectioh
sketches and views. It implements procedures for readidg a
writing sketches to and from XML and SQL files. It also
provides an interface to models maintained in PostgreSQ 4 ' .
and MySQL databases. Easik does not implement a reasonin?& follows where théd column is an automatically-generated
engine. Figurel3 shows a sketch that is similar to the one (€ SERIAL), key.

whose graph is shown in Figur2 It was developed using CREATE TABLE B ( id SERI AL PRI MARY KEY ):

Easik. The screen shot illustrates convenient abbrevistior i i . i
various semantic constraints. The decorated arrows toRers A foreign keyconstraint specifies that the values in one
for example, indicate subtype relationships. These ardgimp OF more columns must m_atch the values occurring in some
mented as cones. Vertices connected to theymbol form  row of another table. We implement a sketch edge— B

a kind of cocone. Its base consists of the vertices Coalition@s @ foreign key contained in thé-table and referencing the
Foreign and Resident. The paths connected to CD indicate Rfimary key of theB-table. In PostgreSQL this is expressed

diagram constraint. as follows.
- CREATE TABLE A ( id SERI AL PRI MARY KEY,
i: e - — = EASIK - Edit Sketch - HumanTerrain &S A e I NTE(ER ’\D‘I’ NULL REFERENCES
File i ilew Constraints Help — ‘Di.scnnnecte.d_ B ( i d) O\l ELE_I_E mSCAm
|7 Eotes ON UPDATE CASCADE ) ;
o= Coalition ) ) i
| Sl Insertion of a row into theA-table, therefore, involves
| [iERenen specifying values for the columns that are introduced ih#i t
= | constrants table for the edges having domai. Deletion of aB-row
| TrengreersEm | can impact thed-table if an A-row references thé-row via
roduct Canstraints . . .
| mbaSnins | the edged — B. Foreign keys serve to implement relations
L Sg”l Canstreints (object properties) in the sketch data model since a relasio
A Sl ] b simply an entity having edges to the nodes that correspond to
Fig. 13. Human terrain sketch implemented using the Eadiiace tool the types of its participants.

Category theory, despite its abstract nature, is highly Although subtype relations (monic edges) are a particular
computational. All semantic constraints, for example, ban kind of cone constraint, they can be implemented as foreign
computed from four basic types: cones can be expressdteys with unique references in the codomain table. In génera
using product cones and equalizer cones; cocones can bewever, sketch constraints are implemented using trigger
expressed using coproducts and coequalizers. One freel trigger for a database table or view executes a specified
available implementation of these and related computationfunction whenever certain events occur. The simple diagram
is written in the ML programming language and is describedshown in Figurel4, for example, asserts that semantics of the
in [25]. This work and similar research activities could provide composite edgef followed by g should equal that of.. In
a basis for implementing a reasoning engine for a sketchebas PostgreSQL we express this as follows.

information system.
CREATE FUNCTI ON conmut at i veDi agr anD()

If the only constraints of the sketch are diagrams (i.e., the RETURNS trigger AS $comutati veDi agranD$
sketch has neither cones nor cocones), then the tl¥E€gwhen DECLARE _cdTarget 1 CONSTANT | NTEGER := NEW h;
T is, in fact, finite) generated by the sketch may be computed _cdTarget 2 CgéEEéTNTal NTESEOI\?/I N
via the left Kan extension algorithm which generalizes the (V\HERE B. ig = NEWT);
Todd-Coxeter procedure from group theors],[[27]. If the BEGN |IF _cdTargetl IS DI STINCT '
generated sketch is infinite, the algorithm, of course, dus FROM _cdTar get 2
terminate. Its complexity in the cases when it does terrainat THEN RAI SE EXCEPTI ON _
has not been characterized and is highly sensitive to small %Hmuﬁ gy!ve di agram constrai nt
variations in the sketchd]. END | F: ’

RETURN NEW
V. |IMPLEMENTING SKETCH MODELS IN DATABASES $COE§5{ ati veDi agr am0$ LANGUAGE pl pgsql ;

. . . . . CREATE TRI GGER conmut at i veDi agr anD
Features available in major relational database systems ”":RBEFO?E | NSERT ON A

cluding PostgreSQL and MySQL provide an interface between FOR EACH ROW EXECUTE
the mathematical theory of sketches and their application. PROCEDURE commut at i veDi agran0();
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