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Abstract—We report on our research effort, called Fast 

Semantic Attribute-Role-Based Access Control (ARBAC), to 

develop a semantic platform-independent framework enabling 

information originators and security administrators to specify 

access rights to information consistently and completely, in a 

social network environment, and then to rigorously enforce that 

specification. We use a modified ARBAC security model and an 

OWL ontology with additional rules in a logic programming and 

Java framework to express access policy, going beyond the 

limitations of previous attempts in this vein. We also 

experimented with knowledge compilation optimizing techniques 

that allow access policy constraint checking to be implemented in 

real-time, via a bit-vector encoding that can be used for rapid 

run-time reasoning. 

Index Terms—access control policy, attribute-based, role-

based, Semantic Web, logic programming, knowledge 

compilation, social network, ontology, rule-based reasoning 

I.  INTRODUCTION 

This paper is a report of our effort to provide a semantic 
platform-independent framework so that information 
originators and security administrators can specify access rights 
to information consistently and completely, in a social network 
environment, and then to rigorously enforce that specification. 
In previous work [1], we discussed the architecture and some 
issues with optimization. In this paper, we introduce the 
architecture (adapted from [1]), but focus more on the 
optimization and implementation issues; as such, this paper can 
be viewed as a follow-on to [1].  

For many sensitivity, privacy, and proprietary reasons, 
information sharing cannot be totally open. This is especially 
true for collaborative social environments such as the emerging 
MITRE Partnership Network (MPN), a large-scale 
environment for group-based (social network) information 
sharing among disparate governmental, commercial, academic, 
and other communities.  

In addition, it is difficult to enforce unambiguous access 
rights and information privileges consistently and coherently 
and apply the access rules correctly and efficiently.   

In a collaborative social environment, access control of 
information protecting privacy, security, and also enabling a 
complex range of policy respecting those requirements, is 
difficult. 

To accomplish these objectives it is necessary to link a 
security policy model to a policy language with sufficient 

expressive power to ensure logical consistency. We used a 
modified Attribute-Role-Based Access Control (ARBAC) 
security model and an OWL ontology with additional rules in a 
logic programming framework to express access policy, going 
beyond the limitations of previous attempts in this vein, and 
then optimized with bit-vectors the runtime policy checking 
inference.  

We focused on three aspects: expressivity, adaptability, and 
efficiency. We developed two implementations: one that 
transforms the policy model instance into a logic programming 
execution environment that includes rules; and a second that 
transforms the model instance into Java data structures, that in 
turn are optimized via a bit-encoding. In both cases, the 
prototype was embedded in a Java program that interfaces with 
external services, e.g., obtaining identity and access tokens 
(and their specific attribute information) from the 
authentication service. 

The structure of the rest of the paper is as follows. In 
section II, we present the overall architecture and describe the 
runtime components. Then in section III, we briefly walk 
through the processing involved, followed in section IV by a 
discussion of the implementation.  Section V addresses the 
optimization issues. We introduce related work in section VI, 
and finally, in section VII, we propose future directions. 

II.  SYSTEM ARCHITECTURE AND RUNTIME COMPONENTS  

The general system architecture of the semantic ARBAC 
system is represented in Figure 1. It consists of three processes 
which flow from left to right. The three processes are: 1) the 
Development time process; 2) the Transformation time process; 
and 3) the Execution (runtime) process. 

The Development process (the red rounded rectangle in 
Figure 1) involves:  

1) The creation (or update) of the ARBAC ontology, 

represented in OWL and RDF, i.e.,  the semantic policy 

model (SPM); and 

2) The instantiation of the specific ARBAC policy (policies) 

to be transformed and deployed, i.e., the semantic policy 

instance (SPI). This is an instance of the semantic policy 

model. 
The Transformation process (the yellow rounded rectangle 

in Figure 1) involves developing and/or generating in Prolog 
and Java:  



1) The transformer interpreter that will take the SPI and 

generate the runtime semantic policy instance (RSPI), 

which is the bit-vector representation of the policy + 

rules;  

2) The attribute signature assignment engine (ASAE) which 

generates and updates the resource access registry (RAR); 

3) The RAR, which captures the attributes of the resources 

in bit-vector representation, indexed by resource URI;  

4) The runtime user access routine (RUAR);  

5) The runtime inference engine (RTIE) which will execute 

the RSPI using the RUAR.  

The Transformation process can thus be considered a 

knowledge compilation process, where source semantic 

models and their interpreting engines get transformed to 

efficient Execution time process objects. 
The Execution process (the blue rounded rectangle in 

Figure 1) thus includes the RAR, ASAE, RTIE, and the RUAR, 
in addition to access to the Development and Transformation 
models and data. 

  
Fig. 1. Fast Semantic ARBAC System Architecture 

 

Figure 2 displays the runtime system components of the 
Fast Semantic ARBAC system. The runtime system 
components view represents most components of the system 
architecture modules displayed in Figure 1, but focuses on their 
relationships at runtime only.  

A. Semantic Policy Model (SPM) 

The SPM consists of the OWL ontology classes, object 
properties, and data properties. The major classes consist of: 
Subject (the person, organization, software that requests 
specific access to a resource), Action (the kind of access 
requested, e.g., read, write, create, delete, execute, etc.), 
Resource (the object needing to be accessed by a subject: 
executable, graphic, text, sound, video, hardware, etc.), 
Environment  (salient aspects of the space or session’s 
environment, e.g., risk or alert level, entry network domain), 
Role (traditional roles such as administrator, expert, end user, 
developer, etc., that are also related to groups), and related 
notions: Authentication (how one authenticates one’s identity 
and so, derivatively, one’s potential access rights), Security 
(can span information security notions such as protocols, 

standards, user- and group-level passwords, encryption 
methods, hashing algorithms and values, etc.), Classification 
Level (proprietary, sensitive, confidential, secret, top-secret, 
etc.), Identity (Public Key Infrastructure [PKI], digital 
certificates, etc.), Time (time-stamps, time intervals with 
respect to various policy notions), etc.  

 
Fig. 2. ARBAC Runtime System Components 

 

In addition, rules are a very important component of the 
semantic policy model (SPM). Rules exist outside of the OWL 
ontology per se, but are based on the classes and properties 
specified in the ontology. Rules were expressed  initially in 
Prolog, and then in Java code for the second prototype. Rules 
are potentially recursive and express logical constraints among 
and across class and property values (instances). Some 
examples are given below. 

The SPM represents a set of generic semantic components 
for ARBAC policy, and thus constitutes a family of potential 
specific ARBAC instantiations. 

B. Other Components of the Architecture 

For more detailed descriptions of other components of the 
architecture, including the SPI, RSPI, RAR, ASAE, RIE, 
RUAR, the OWL parser, and external service interface, we 
direct interested readers to [1]. 

III. ACCESS DECISION PROCESS FLOW AND WALKTHROUGH 

The following depicts the access decision process flow. 

 Initially, the Policy/Rules KB is read and loaded 
(including any general rules that apply to all 
circumstances) by the inference engine.  

 Then a request comes in containing the Subject, 
Resource, Action, and Environment. 

 The Subject’s Group membership is looked up and 
formed. 

 An initial Resource/Group/Access check may be 
performed. 

 For some common accesses these may be cached, or 
may require no further processing if a quick decision 
can be made. 

 Otherwise, the appropriate rule set is generated and 
populated with: any referenced access rule (pre-filtered 
to keep the KB small and fast), all facts about the 
Subject, Resource, Groups, and Environment, and 
General (generally applicable) rules. 



 The rule set is passed to a runtime inference engine 
which evaluates the truth of the permission statement 
(something along the lines of allow(Subject, Access, 
Resource)). 

 The Inference Engine passes back the permission 
decision. 

The semantic policy model (SPM) is the holder of much of 

the underlying knowledge. Its contents include: 

 Ontology 

 Access Rules 

 Group Membership Rules 

 General Rules 

The Access Rules ultimately determine whether an action 

can be performed on a resource (a ‘Privilege’ to denote the 

pairing of actions and resources); each rule has three parts: 

1. The head, or consequence, which is always a 

privilege (e.g., hasPrivilege(subject22, 

read,medicalRecord66) ). This leaves the body of the 

rule which for convenience is broken into 2 parts: 

2. The Group membership required to obtain the 

privilege, and 

3. Any additional requirements, expressed in terms of 

environment variables. 

Example:  

hasPrivilege(Subject, Action, Resource)  

  agent(Subject), member(Subject, Group),  

environmentalConstraints(Group, Action, Resource, 

Environment), groupWithPrivilege(Group, Action, 

Resource, Environment). 

Premises: 

 All access decisions can be expressed as a  

privilege    requirements rule. 

 All role or subject attributes can be expressed as 

group membership. 

 Group membership is both dynamic and contextual. 

 Resources and their attributes are known a priori. If 

resources and attributes can change arbitrarily 

dynamically, this will decrease performance. 

Knowledge of four things is used to resolve a permission 

question: 

1. The Subject (the entity requesting the permission) 

2. The Resource that the Subject is requesting 

permission about 

3. The Action that the Subject wishes to perform 

4. The Environment, which is a set of facts/assertions 

that the rules may take into account in order to make 

a permission determination. 

The result will be either a yes or no answer as to whether 

permission is granted. 

The access rules can have fairly complicated group 

membership conditions (e.g., a doctor who is an associate of a 

patient’s primary care physician can have read access to that 

patient’s medical record).  Therefore, determining group 

membership may rely on a number of General Rules to help 

resolve the inferences (e.g., a doctor may be a member of a 

group; if another doctor is also a member of that group, then 

that doctor is an associate of the first doctor, etc.).  By making 

group membership dynamic we can keep the access rules 

general. 

IV. IMPLEMENTATION 

The Fast Semantic ARBAC software prototype was 

designed to show how a system could quickly make access 

decisions based on the attribute values of the requesting agent.  

How the agent obtained the attribute values is outside the 

scope of the prototype; the ARBAC system is provided these 

from a separate source, projected to be a session authentication 

token (with a prescribed lifespan), that points to the attribute 

store, which has been obtained and encoded by the ARBAC 

system.  

To achieve this, five conceptual classes were defined that 

constitute the “ARBAC view” of the world:  Agents, 

Resources, Groups, ResourceCollections, and Policies.  Two 

of these are collections, or sets:  Groups (collections of 

Agents) and ResourceCollections (collections of Resources).  

They are hierarchical, e.g., one group may be a subset of 

another group, so any member of the subset group is 

automatically a member of the larger group.  The other three 

classes are “flat” in an ontological sense, but contain many 

instances.  Agents have (at least) a unique ID, and zero or 

more attribute/value pairs, which contain values that may be 

assigned to them by an organization or may be values 

contained in a security token.  A Group is a set of Agents; 

group membership can be expressed in two ways: directly (an 

Agent by his/her ID value is asserted to be a member of a 

specific group) or indirectly (by specifying a set of 

attribute/value pairs an agent must possess in order to be a 

member of that group; any agent having all of the specified 

attribute/value pairs is considered a member of the group).  

Each group also has a unique ID. Unique IDs are considered 

special attributes and are assigned by the attribute signature 

assignment engine (ASAE), which updates the resource access 

registry (RAR). Agent IDs in the future will probably inherit 

the IDs of the identity token received from the external 

authentication service. 

Resources and ResourceCollections are organized similarly 

to Agents and Groups.  Resources also have a unique ID 

assigned by the attribute signature assignment engine (ASAE), 

and possess attribute/value pairs (such as ownedBy:: 

someOrganization, or locatedAt:: area).  ResourceCollections 

likewise are sets of Resources, and membership can also be 

asserted directly or indirectly using a set of attribute/value 

pairs that a Resource must have.  

Policies are different from the other four classes, in that 

they specify the “access rules” of what it takes for an Agent to 

perform some action on a Resource.  In essence, a policy is 

just a 3-tuple containing a reference to a ResourceCollection 

ID that the policy controls, a reference to the Group ID to 

which an Agent must belong, and the action (from an 

enumerated set) which the Agent is requesting to perform. 

The result is a simple but very flexible way to organize 

authorization decisions about accessing resources.  In addition 

to general group membership, some special cases are also 

supported.  For instance, a ResourceCollection can be created 



to contain a single resource in order to directly control it.  

Similarly, a Group can be defined to consist of a single agent 

thus allowing individualized policies.  Again, Groups and 

ResourceCollections may be organized in a hierarchy which 

simplifies policy creation and application.  Some advanced 

access control mechanisms, such as an expiration date/time for 

an agent’s token value, or the ability to specify negative 

conditions (e.g., agents which have a certain attribute/value 

pair(s) are NOT allowed access) are not implemented in this 

prototype, but are not precluded by this approach (i.e., they 

could be added at a later date without having to re-design the 

prototype system). 

The ARBAC software is able to make quick authorization 

decisions because 1) most of the required information is 

known a priori and 2) the actual decision becomes a largely 

lookup-and-compare operation.  The policies and resource 

attributes are known and stored in a location accessible to the 

ARBAC system.  The Group and ResourceCollection 

definition rules are also known ahead of time and stored 

(although these may need to be recomputed from time to 

time).  The agent’s attribute/value pairs are passed to the 

ARBAC system (usually via a secureID token, but it can be 

done in other ways) once the agent logs onto the system.  The 

Groups to which the Agent belongs can then be pre-computed 

right after login (before the Agent even selects a Resource, in 

most cases).  Once the agent selects a Resource and the action 

he/she wants to take, a series of lookups take place.  First, all 

of the policies related to the Groups to which the Agent 

belongs and allow the requested Action are obtained.  Next, all 

of the IDs of the ResourceCollections to which the Resource 

belongs are obtained.  Then the retrieved policies are 

examined to see if any of them contain a reference to any of 

the relevant ResourceCollections.  If any one of them does, 

then that allows the Agent to access the requested Resource 

and perform the desired action.  If none of the policies 

contains a reference to any of the possible 

ResourceCollections, then the action is not allowed. 

The actual implementation of the system allows for several 

possibilities.  Based on our work in FY12, the initial design 

represented each of the five conceptual classes as OWL 

classes, and each instance as an OWL individual.  

Attribute/value pairs were implemented as OWL datatype 

properties, as were the policy tuples.  While some of the 

reasoning (such as class hierarchy subsumption) could be done 

in OWL, most of the actual policy/rule reasoning was done 

using Prolog.  The ARBAC system converted the 

(hierarchically extended) information into Prolog assertions 

and then made a prolog query to see if a particular 

Agent/Resource/Action combination was allowable.  While 

this proved workable, expressing all of the information in 

OWL (and using the Jena OWL reasoner to do some of the 

pre-computation) turned out to be somewhat cumbersome.  

Furthermore, the OWL format is not very interoperable with 

what are likely to be the other components of a true ARBAC 

system (such as other databases).  Since only a small portion 

of the OWL semantics were needed, it was decided to 

generalize the expression of the ARBAC data by allowing it to 

be held in other formats, e.g., JSON (Java Script Object 

Notation). 

Using JSON instead of OWL (with Jena) resulted in a 

performance increase.  Also, because many data sources 

support JSON this approach will make interoperability much 

easier.  Another implementation change was to use a direct bit 

vector approach in Java for policy evaluation, rather than 

Prolog.  The idea is that by keeping everything in Java (Prolog 

requires a call to an external .dll or .so application) and using 

the inherent efficiency of bit reasoning, performance would 

increase further.  So a parallel implementation using the 

standard Java BitSet class was created, whereby each 

attribute/value pair is assigned a bit position at runtime.  

Group membership and ResourceCollection membership were 

then pre-computed using a set of bits (i.e., a bit vector).  When 

an agent selects a Resource, all of the Policies are retrieved 

based on the pre-computed ResourceCollections, and these are 

compared with the set of the Agent’s Groups.  If any Group is 

found in any of the policies, then the action is approved.  

Given the small set of data available, it was not possible to 

determine which approach (Prolog based or bit vector based, 

or both) will have the better performance at scale; this 

determination will need to be made during a follow-on test and 

integration effort. 

V. OPTIMIZATION: BIT-ENCODING 

Bit representation for ontology constructs (classes, 

properties, etc.), subsumption, and rule reasoning must address 

two related notions: 

1) Efficiency of the representation in space and time. This 

includes efficiency of the encoding for storage 

purposes, but also compaction/compression techniques. 

It also includes the time required to perform the offline, 

development time encoding, as well as the time  

required to do the matching, subsumption 

computations, and automated reasoning performed at 

runtime. 

2) Incremental encoding, i.e., making modifications 

dynamically during runtime to ontology constructs and 

rules, potentially recomputing the encodings of 

ontology constructs and rules, and then continuing 

efficient reasoning. 

A. Ontology Constructs 

The primary ontology constructs we use are the following: 

 Group: A subclass of Collection. There are Classes of 

Groups (such as the Federally Funded Research and 

Development Center [FFRDC] class) and there are 

instances of Classes that are groups (e.g., the instances 

of the FFRDC class, such as MITRE, Aerospace, Los 

Alamos National Lab, etc.) 

 Resource: A resource is any hardware, software, or 

service. 

 ResourceCollection: A subclass of Collection. There 

are Classes of ResourceCollections and there instances 

of Classes that are resource collections. 



 User: A user (agent) is generally a person, but could 

be a software agent. 

 Policy: A policy is a set of access constraints on a 

Group or Resource created by a User who has the 

requisite permissions to create the policy. 

 Access: The kind of access a User has to a Resource, 

as permitted by a Policy. Examples: Create, Read, 

Write, Delete, Execute, etc.  

Because we are focusing primarily on “attributes” for 

access control, whether or not a User U belongs to a specific 

Group is a Boolean attribute, with value either ‘true’ or ‘false’ 

(of value ‘true’ if the User U is a member of a Group G, else 

of value ‘false’). Similarly, whether or not a Resource R is a 

member of a ResourceCollection RG is a Boolean attribute. If 

it helps us in our processing, even a User U can be considered 

a singleton Group, i.e., a specific instance of a Group having 

just one member, U. 

We assume a User U can create a Policy P (perhaps of a 

specific type) that grants another User U’ specific Accesses A 

to a Resource R of ResourceCollection RC if the User is a 

member of some Group G and Group G ‘owns’ the 

ResourceCollection. Other policies may specify Roles, etc., 

which we are not yet addressing here. 

The bit-representation for Group (and Resource) constructs 

is similar to the following, naïve representation: 

Table 1. User Groups: Bit Representation 

 G1 G2 G3 G4 G5 G6 G7 G8 G9 

U1 1 1 0 0 0 0 0 0 0 

U2 0 1 1 0 0 0 0 0 0 

U3 0 0 1 1 1 0 0 0 0 

U4 1 0 1 1 1 1 0 0 0 

 

B. Subsumption 

Subsumption is the relatively simple automated reasoning 
that can be done on hierarchies of classes, i.e., the taxonomic 
subclass ‘backbone’ of the ontology. These subclass hierarchies 
are important for ontologies, but also important for strongly 
typed programming languages, which perform subsumption 
reasoning as ‘type inference’ over the formal types of 
constructions in the specific program.  

Ait-Kaci et al [4] proposed a number of bit-representations 
that could be used for very efficient subsumption reasoning,  by 
plungeing the hierarchy of classes (or types), which typically 
constitutes a ‘partially ordered set’ (poset), into a boolean 
lattice, thus enabling efficient Greatest Lower Bound (GLB) 
and Least Upper Bound (LUB)  operations, and efficient 
transitive closure.  In an arbitrary poset, neither the GLB or the 
LUB is guaranteed to exist, but there are formal structural 
embeddings one can perform on the poset into an order-
preserving structure, a semilattice, a lower semilattice in this 
initial case, which  preserves the GLB, sometimes called a 
meet-semilattice, which says that for any nonempty finite 
subset of poset, there is a GLB. Note that the ordering relation 
on the elements of the poset (which define the poset) is 
typically notated as ≤ , e.g., a ≤ b, where ≤ is reflexive, 
antisymmetric, and transitive.  

An ontology subclass relation is an ordering relation on the 
classes, i.e., reflexive, antisymmetric, and transitive. OWL 

provides a top (greatest or most general) and bottom (least or 
most specific) class, called respectively Thing and Nothing, 
which makes OWL into a language able to model bounded 

(semi-) lattices. Bottom is often notated as , with top notated 
as ⊤. 

C. Encoding Bit Representations of Subsumption and 

Inheritance 

We will discuss encodings proposed in the literature, 

beginning first with a naïve bit matrix representation. For all 

of these encodings, we adapt the example used by [17, p. 16-

17], displayed in graph form as the ontology of classes in 

Figure 3 (where the isa relation is taken to be synonymous 

with the subclass relation). We use this example, rather than 

one drawn from our domain ontology, simply because our 

ontology does not currently have much depth and no multiple 

inheritance, which this example has. Note that these ‘role’ 

subclasses are not ontologically correct, but have been 

accommodated to a simple example.  

 

Fig. 3. Academic Role Ontology 

Table 2 displays the naïve bit matrix representation for this 

ontology’s subsumption relations. Note that the bit assignment 

goes as follows: 

1) Initially assign 1 (true) for every class (i, j) (where i is 

the row, j is the column)  and itself, because every 

class subsumes itself.  This means there is a diagonal 

with value 1 from (1, 1) to (n, n).  

2) Then for each cell of the matrix (i, j), if  the class i is 

an ancestor of class j, assign the value 1, otherwise 

assign the value 0. 

Table 2. Naïve bit matrix representation of Subsumption 
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j: column 
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This encoding thus is the reflexive, transitive closure of the 

(antisymmetric) subclass (isa) hierarchy of Figure 4. 
The naïve bit-assignment algorithm as represented in Table 

2 is bottom-up, with an implicit ‘bottom’ ().  The classes 
Employee and Student, and then Person, are the only classes 
which have subclasses. 

Subsumption between two classes can then be computed in 
constant time using a binary AND operation on the bit vectors 
of the two classes.  The subsumption operator over the bit-
encoded classes is defined as follows. 

 

Definition: Subsumption over  Bit-Encoded Classes: 

Let x1, …, xn, be classes in a subclass hierarchy,  be an bit-

encoding function, and ⊑ be the subsume relation  (where ,  

are classes and  ⊑  is read as ‘class  subsumes class ’): 

Then the following holds: 

i.  (xi) ⊑  (xj)   (xi) AND  (xj) =  (xj)  

[the encoding of the first class subsumes the 
encoding of the second class if and only if the binary 
AND of those encodings is equal to the encoding of 
the second class] 

ii.  (xj) ⊑/  (xi)   (xj) AND  (xi)   (xj) 

[the encoding of the first class does not subsume 
the encoding of the second class if and only if the 
binary AND of those encodings is not equal to the 
encoding of the second class]  

 

Example 1:  Does TeachingAssistant subsume 
AssociateProfessor? 
I.e., does AssociateProfessor occur in the transitive closure of 
the subclass relation of TeachingAssistant? 
SubsumeS (TeachingAssistant, AssociateProfessor)  

= AND (0000001, 0001000) = 00000000, i.e., no. 
 

Example 2: Does Person subsume TeachingAssistant? 
Subsumes (Person, TeachingAssistant) 

= AND (1111111, 0000001) = 0000001, i.e., yes, 
because the result 0000001 = 0000001 (the encoding for 
TeachingAssistant. 

 

Example 3: Does Employee subsume  Student? 
Subsumes (Employee, Student) 

= AND (0011101, 0100011)  = 0000001, i.e., no, 

because the result 0000001  0100011 (the encoding for 
Student). 

What if one wants at runtime to add a new class 
incrementally (dynamically) after the above bit-representation 
has been generated at development time? We add the new class 
ResearchAssistant to the original ontology, resulting in Figure 
4. 

Recomputing our bit-matrix, we arrive at the following, 
Table 3. Note that we have to add a new bit by creating a new 
row and new column for ResearchAssistant, which we add as a 
new i+1 row and a new j+1 column into the matrix (but above 

 

 

Fig. 4. Academic Role Ontology + ResearchAssistant 

If we added the new bit as a new row and new column at 

the beginning of the matrix, then we would maintain the 1-bit 

diagonal we saw in Table 2.  In addition, of course, we have to 

update the entries in the new Research Assistant column with 

their values (1 if an ancestor of Research Assistant, 0 

otherwise). The naïve bit-encoding of Subsumption requires 

n2 bits. 

Table 3. Naïve bit matrix representation of Subsumption with Incrementally 
Added ResearchAssistant Class 
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Person 1 1 1 1 1 1 1 1 

Student 1 0 1 0 0 0 1 1 

Employee 1 0 0 1 1 1 0 1 

Associate 

Professor 

0 0 0 0 1 0 0 0 

Tenured 

Professor 

0 0 0 0 0 1 0 0 

PhD 

Student 

0 0 0 0 0 0 1 0 

Teaching 

Assistant 

0 0 0 0 0 0 0 1 

Research 

Assistant 

1 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 

 

Ait-Kaci et al [4] propose a number of new methods for 
encoding subsumption. Their first method requires a bottom-up 
(from the terminal classes to the root class) computing of the 
binary OR of the bits assigned to children classes, the result of 
which becomes the bit-encoding of their parent classes. New 
bits are introduced whenever a parent has just one class and 



whenever a false positive subsumption would result.  If 
incremental updates to the encoding are necessary, there are 
potential complications. If one wants to add new leaf (terminal) 
class nodes to the hierarchy, such as we did with 
ResearchAssistant above, there are no issues. However, if one 
wants to add new non-terminal (or root) nodes, there are 
complications. If a class Cj  is added that has the same 
inheriting subclasses as an existing class Ci, then a new bit 
must be added to re-encode the existing class and all of its 
ancestors too. In addition, any new non-terminal class will have 
to have the ancestors of its children classes checked for 
conflicting encodings. 

For a discussion of other bit-encoding techniques, the 
interested reader is directed to [17, pp. 16-23]. There are other 
encoding approaches, including interval-encodings. Interval-
based encodings compute non-overlapping codes for the 
children within the interval of the parent, but do not support 
multiple inheritance. 

In fact, although each of the above approaches out-perform 

the naïve encoding, all of them have some issues (except 

perhaps [17], which relies on binary representation of prime 

numbers) with incremental (dynamic) updates, requiring some 

recomputation of encodings and determination of conflicts, 

which in turn may require recomputation of encodings. 

Rules too may be given encodings, but space limitations 

preclude a discussion of this topic here, but see [8] for 

Boolean satisfiability (SAT) reasoning using bit-matrices. 

VI. RELATED WORK 

There is much previous related research across multiple 

dimensions (access control regimes, policy languages and 

approaches, specialized languages (and logics) vs. ontology 

approaches, knowledge compilation issues, bit-vector and 

other optimization approaches, social network approaches, 

privacy vs. security issues and approaches, etc.) that have 

influenced our current and impending work.   

In order to accomplish our objectives it was necessary to 

link a security policy model to a policy language with 

sufficient expressive power to ensure logical consistency. We 

extend the NIST Role-Based Access Control (RBAC) security 

model [15] and related approaches [18-19], as have many 

other researchers to include attributes, and extend the Web 

Ontology Language (OWL) with additional rules to express 

access policy using logic programming, and beyond the 

limitations of [20]. Unfortunately, given our own space 

limitations here,  we cannot do an extensive comparison of our 

approach across the multiples dimensions with other 

approaches, nor justly describe those other approaches.  

In addition, there is extensive research in more general 

policy-based approaches that could be employed also for 

access control [21-22].  

There are other Semantic Web-based approaches (including 

[22]), some of which address more specifically social network 

types of applications [23, 24]. 

For implementation in real-time, via a bit-vector or other 

efficient encodings that can be used for rapid run-time 

reasoning, we’ve looked at [2-6, 7-12, 17]. For bit-vector 

representation to support RDF triples, we investigated [11-14].  

Our own previous work addressed issues in translating 

OWL/RDF ontologies and Semantic Web Rule Language 

Rules (SWRL) [25] into logic programming for efficient 

runtime reasoning, and employing knowledge compilation 

techniques [26-28], which we also generalized to address 

services using first-order logic theorem provers and for 

ontology alignment [29]. 

VII. FUTURE WORK 

Although we have investigated and implemented some 

optimizations, e.g., extensionalization and delayed rule 

evaluation, we have only rudimentarily implemented the 

second-level of optimization we intended, i.e., the bit-

representation execution at runtime.  

If we had additional time, we intended to implement the 

prime-number bit-encoding of subsumption described in [17]. 

In general, for the restricted reasoning we need for access 

control policy enforcement as described in this paper, and 

given the probable volume of access request determinations 

(and thus subsumption and equivalence checks, rule 

execution) we foresee needing in a complex collaborative 

social network environment such as the MPN, optimized 

efficient automated reasoning is necessary. Traditional, more 

general description logic reasoners were deemed too slow 

(Pellet, etc.) In addition, most proposed bitmap encodings for 

subsumption and type reasoning are efficiently statically 

initialized and then used, but dynamically updating the 

subsumption/type hierarchy, i.e., adding, deleting, modifying 

classes and properties (which will happen, under the Open 

World Assumption of OWL and first-order logic), leads to 

degraded performance and increasingly baroque re-encodings 

to avoid conflicts. 

Therefore, we would consider implementing the bit-

encoding scheme based on assigning prime numbers to nodes 

in the class and property subsumption graphs, as developed by  

Preuveneers and Berbers [17, 30]. Adding a new class or 

property does not require re-encoding. Furthermore, the 

encoding automatically provides us the direction of the 

relationship. Modular hierarchies, each separately encoded, 

with very efficient subsumption-checking, are the result. 

Figure 5 depicts a subclass hierarchy encoded using prime 

numbers. 

 

FIG. 5. PRIME NUMBER ENCODING FOR CLASS SUBSUMPTION 



In addition to the use of prime numbers, the scheme of [17, 

30] defines a compact binary matrix representation of the 

inheritance relationships, which we will not go into here.  

Evaluation done in [30, p. 32]  shows that subsumption 

testing in his scheme is much faster than that of some major 

existing description logic reasoners, on the order of 250 times 

faster than Pellet. An evaluation performed on a different 

project we are involved in, written in C/C++ demonstrated 

1000% improvement using this method of subsumption 

checking over the previous naïve, breadth-first search of the 

subsumption graph. 
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