
Approved for Public Release; Distribution Unlimited. 13-3295

Fast Semantic Attribute-Role-Based Access

Control (ARBAC)

Leo Obrst
a
, Dru McCandless

b
, David Ferrell

a

The MITRE Corporation
a
McLean, VA

b
Colorado Springs, CO

{lobrst, mccandless, ferrell}@mitre.org

Abstract—We report on our research effort, called Fast

Semantic Attribute-Role-Based Access Control (ARBAC), to

develop a semantic platform-independent framework enabling

information originators and security administrators to specify

access rights to information consistently and completely, in a

social network environment, and then to rigorously enforce that

specification. We use a modified ARBAC security model and an

OWL ontology with additional rules in a logic programming and

Java framework to express access policy, going beyond the

limitations of previous attempts in this vein. We also

experimented with knowledge compilation optimizing techniques

that allow access policy constraint checking to be implemented in

real-time, via a bit-vector encoding that can be used for rapid

run-time reasoning.

Index Terms—access control policy, attribute-based, role-

based, Semantic Web, logic programming, knowledge

compilation, social network, ontology, rule-based reasoning

I. INTRODUCTION

This paper is a report of our effort to provide a semantic
platform-independent framework so that information
originators and security administrators can specify access rights
to information consistently and completely, in a social network
environment, and then to rigorously enforce that specification.
In previous work [1], we discussed the architecture and some
issues with optimization. In this paper, we introduce the
architecture (adapted from [1]), but focus more on the
optimization and implementation issues; as such, this paper can
be viewed as a follow-on to [1].

For many sensitivity, privacy, and proprietary reasons,
information sharing cannot be totally open. This is especially
true for collaborative social environments such as the emerging
MITRE Partnership Network (MPN), a large-scale
environment for group-based (social network) information
sharing among disparate governmental, commercial, academic,
and other communities.

In addition, it is difficult to enforce unambiguous access
rights and information privileges consistently and coherently
and apply the access rules correctly and efficiently.

In a collaborative social environment, access control of
information protecting privacy, security, and also enabling a
complex range of policy respecting those requirements, is
difficult.

To accomplish these objectives it is necessary to link a
security policy model to a policy language with sufficient

expressive power to ensure logical consistency. We used a
modified Attribute-Role-Based Access Control (ARBAC)
security model and an OWL ontology with additional rules in a
logic programming framework to express access policy, going
beyond the limitations of previous attempts in this vein, and
then optimized with bit-vectors the runtime policy checking
inference.

We focused on three aspects: expressivity, adaptability, and
efficiency. We developed two implementations: one that
transforms the policy model instance into a logic programming
execution environment that includes rules; and a second that
transforms the model instance into Java data structures, that in
turn are optimized via a bit-encoding. In both cases, the
prototype was embedded in a Java program that interfaces with
external services, e.g., obtaining identity and access tokens
(and their specific attribute information) from the
authentication service.

The structure of the rest of the paper is as follows. In
section II, we present the overall architecture and describe the
runtime components. Then in section III, we briefly walk
through the processing involved, followed in section IV by a
discussion of the implementation. Section V addresses the
optimization issues. We introduce related work in section VI,
and finally, in section VII, we propose future directions.

II. SYSTEM ARCHITECTURE AND RUNTIME COMPONENTS

The general system architecture of the semantic ARBAC
system is represented in Figure 1. It consists of three processes
which flow from left to right. The three processes are: 1) the
Development time process; 2) the Transformation time process;
and 3) the Execution (runtime) process.

The Development process (the red rounded rectangle in
Figure 1) involves:

1) The creation (or update) of the ARBAC ontology,

represented in OWL and RDF, i.e., the semantic policy

model (SPM); and

2) The instantiation of the specific ARBAC policy (policies)

to be transformed and deployed, i.e., the semantic policy

instance (SPI). This is an instance of the semantic policy

model.
The Transformation process (the yellow rounded rectangle

in Figure 1) involves developing and/or generating in Prolog
and Java:

1) The transformer interpreter that will take the SPI and

generate the runtime semantic policy instance (RSPI),

which is the bit-vector representation of the policy +

rules;

2) The attribute signature assignment engine (ASAE) which

generates and updates the resource access registry (RAR);

3) The RAR, which captures the attributes of the resources

in bit-vector representation, indexed by resource URI;

4) The runtime user access routine (RUAR);

5) The runtime inference engine (RTIE) which will execute

the RSPI using the RUAR.

The Transformation process can thus be considered a

knowledge compilation process, where source semantic

models and their interpreting engines get transformed to

efficient Execution time process objects.
The Execution process (the blue rounded rectangle in

Figure 1) thus includes the RAR, ASAE, RTIE, and the RUAR,
in addition to access to the Development and Transformation
models and data.

Fig. 1. Fast Semantic ARBAC System Architecture

Figure 2 displays the runtime system components of the
Fast Semantic ARBAC system. The runtime system
components view represents most components of the system
architecture modules displayed in Figure 1, but focuses on their
relationships at runtime only.

A. Semantic Policy Model (SPM)

The SPM consists of the OWL ontology classes, object
properties, and data properties. The major classes consist of:
Subject (the person, organization, software that requests
specific access to a resource), Action (the kind of access
requested, e.g., read, write, create, delete, execute, etc.),
Resource (the object needing to be accessed by a subject:
executable, graphic, text, sound, video, hardware, etc.),
Environment (salient aspects of the space or session’s
environment, e.g., risk or alert level, entry network domain),
Role (traditional roles such as administrator, expert, end user,
developer, etc., that are also related to groups), and related
notions: Authentication (how one authenticates one’s identity
and so, derivatively, one’s potential access rights), Security
(can span information security notions such as protocols,

standards, user- and group-level passwords, encryption
methods, hashing algorithms and values, etc.), Classification
Level (proprietary, sensitive, confidential, secret, top-secret,
etc.), Identity (Public Key Infrastructure [PKI], digital
certificates, etc.), Time (time-stamps, time intervals with
respect to various policy notions), etc.

Fig. 2. ARBAC Runtime System Components

In addition, rules are a very important component of the
semantic policy model (SPM). Rules exist outside of the OWL
ontology per se, but are based on the classes and properties
specified in the ontology. Rules were expressed initially in
Prolog, and then in Java code for the second prototype. Rules
are potentially recursive and express logical constraints among
and across class and property values (instances). Some
examples are given below.

The SPM represents a set of generic semantic components
for ARBAC policy, and thus constitutes a family of potential
specific ARBAC instantiations.

B. Other Components of the Architecture

For more detailed descriptions of other components of the
architecture, including the SPI, RSPI, RAR, ASAE, RIE,
RUAR, the OWL parser, and external service interface, we
direct interested readers to [1].

III. ACCESS DECISION PROCESS FLOW AND WALKTHROUGH

The following depicts the access decision process flow.

 Initially, the Policy/Rules KB is read and loaded
(including any general rules that apply to all
circumstances) by the inference engine.

 Then a request comes in containing the Subject,
Resource, Action, and Environment.

 The Subject’s Group membership is looked up and
formed.

 An initial Resource/Group/Access check may be
performed.

 For some common accesses these may be cached, or
may require no further processing if a quick decision
can be made.

 Otherwise, the appropriate rule set is generated and
populated with: any referenced access rule (pre-filtered
to keep the KB small and fast), all facts about the
Subject, Resource, Groups, and Environment, and
General (generally applicable) rules.

 The rule set is passed to a runtime inference engine
which evaluates the truth of the permission statement
(something along the lines of allow(Subject, Access,
Resource)).

 The Inference Engine passes back the permission
decision.

The semantic policy model (SPM) is the holder of much of

the underlying knowledge. Its contents include:

 Ontology

 Access Rules

 Group Membership Rules

 General Rules

The Access Rules ultimately determine whether an action

can be performed on a resource (a ‘Privilege’ to denote the

pairing of actions and resources); each rule has three parts:

1. The head, or consequence, which is always a

privilege (e.g., hasPrivilege(subject22,

read,medicalRecord66)). This leaves the body of the

rule which for convenience is broken into 2 parts:

2. The Group membership required to obtain the

privilege, and

3. Any additional requirements, expressed in terms of

environment variables.

Example:

hasPrivilege(Subject, Action, Resource)

 agent(Subject), member(Subject, Group),

environmentalConstraints(Group, Action, Resource,

Environment), groupWithPrivilege(Group, Action,

Resource, Environment).

Premises:

 All access decisions can be expressed as a

privilege  requirements rule.

 All role or subject attributes can be expressed as

group membership.

 Group membership is both dynamic and contextual.

 Resources and their attributes are known a priori. If

resources and attributes can change arbitrarily

dynamically, this will decrease performance.

Knowledge of four things is used to resolve a permission

question:

1. The Subject (the entity requesting the permission)

2. The Resource that the Subject is requesting

permission about

3. The Action that the Subject wishes to perform

4. The Environment, which is a set of facts/assertions

that the rules may take into account in order to make

a permission determination.

The result will be either a yes or no answer as to whether

permission is granted.

The access rules can have fairly complicated group

membership conditions (e.g., a doctor who is an associate of a

patient’s primary care physician can have read access to that

patient’s medical record). Therefore, determining group

membership may rely on a number of General Rules to help

resolve the inferences (e.g., a doctor may be a member of a

group; if another doctor is also a member of that group, then

that doctor is an associate of the first doctor, etc.). By making

group membership dynamic we can keep the access rules

general.

IV. IMPLEMENTATION

The Fast Semantic ARBAC software prototype was

designed to show how a system could quickly make access

decisions based on the attribute values of the requesting agent.

How the agent obtained the attribute values is outside the

scope of the prototype; the ARBAC system is provided these

from a separate source, projected to be a session authentication

token (with a prescribed lifespan), that points to the attribute

store, which has been obtained and encoded by the ARBAC

system.

To achieve this, five conceptual classes were defined that

constitute the “ARBAC view” of the world: Agents,

Resources, Groups, ResourceCollections, and Policies. Two

of these are collections, or sets: Groups (collections of

Agents) and ResourceCollections (collections of Resources).

They are hierarchical, e.g., one group may be a subset of

another group, so any member of the subset group is

automatically a member of the larger group. The other three

classes are “flat” in an ontological sense, but contain many

instances. Agents have (at least) a unique ID, and zero or

more attribute/value pairs, which contain values that may be

assigned to them by an organization or may be values

contained in a security token. A Group is a set of Agents;

group membership can be expressed in two ways: directly (an

Agent by his/her ID value is asserted to be a member of a

specific group) or indirectly (by specifying a set of

attribute/value pairs an agent must possess in order to be a

member of that group; any agent having all of the specified

attribute/value pairs is considered a member of the group).

Each group also has a unique ID. Unique IDs are considered

special attributes and are assigned by the attribute signature

assignment engine (ASAE), which updates the resource access

registry (RAR). Agent IDs in the future will probably inherit

the IDs of the identity token received from the external

authentication service.

Resources and ResourceCollections are organized similarly

to Agents and Groups. Resources also have a unique ID

assigned by the attribute signature assignment engine (ASAE),

and possess attribute/value pairs (such as ownedBy::

someOrganization, or locatedAt:: area). ResourceCollections

likewise are sets of Resources, and membership can also be

asserted directly or indirectly using a set of attribute/value

pairs that a Resource must have.

Policies are different from the other four classes, in that

they specify the “access rules” of what it takes for an Agent to

perform some action on a Resource. In essence, a policy is

just a 3-tuple containing a reference to a ResourceCollection

ID that the policy controls, a reference to the Group ID to

which an Agent must belong, and the action (from an

enumerated set) which the Agent is requesting to perform.

The result is a simple but very flexible way to organize

authorization decisions about accessing resources. In addition

to general group membership, some special cases are also

supported. For instance, a ResourceCollection can be created

to contain a single resource in order to directly control it.

Similarly, a Group can be defined to consist of a single agent

thus allowing individualized policies. Again, Groups and

ResourceCollections may be organized in a hierarchy which

simplifies policy creation and application. Some advanced

access control mechanisms, such as an expiration date/time for

an agent’s token value, or the ability to specify negative

conditions (e.g., agents which have a certain attribute/value

pair(s) are NOT allowed access) are not implemented in this

prototype, but are not precluded by this approach (i.e., they

could be added at a later date without having to re-design the

prototype system).

The ARBAC software is able to make quick authorization

decisions because 1) most of the required information is

known a priori and 2) the actual decision becomes a largely

lookup-and-compare operation. The policies and resource

attributes are known and stored in a location accessible to the

ARBAC system. The Group and ResourceCollection

definition rules are also known ahead of time and stored

(although these may need to be recomputed from time to

time). The agent’s attribute/value pairs are passed to the

ARBAC system (usually via a secureID token, but it can be

done in other ways) once the agent logs onto the system. The

Groups to which the Agent belongs can then be pre-computed

right after login (before the Agent even selects a Resource, in

most cases). Once the agent selects a Resource and the action

he/she wants to take, a series of lookups take place. First, all

of the policies related to the Groups to which the Agent

belongs and allow the requested Action are obtained. Next, all

of the IDs of the ResourceCollections to which the Resource

belongs are obtained. Then the retrieved policies are

examined to see if any of them contain a reference to any of

the relevant ResourceCollections. If any one of them does,

then that allows the Agent to access the requested Resource

and perform the desired action. If none of the policies

contains a reference to any of the possible

ResourceCollections, then the action is not allowed.

The actual implementation of the system allows for several

possibilities. Based on our work in FY12, the initial design

represented each of the five conceptual classes as OWL

classes, and each instance as an OWL individual.

Attribute/value pairs were implemented as OWL datatype

properties, as were the policy tuples. While some of the

reasoning (such as class hierarchy subsumption) could be done

in OWL, most of the actual policy/rule reasoning was done

using Prolog. The ARBAC system converted the

(hierarchically extended) information into Prolog assertions

and then made a prolog query to see if a particular

Agent/Resource/Action combination was allowable. While

this proved workable, expressing all of the information in

OWL (and using the Jena OWL reasoner to do some of the

pre-computation) turned out to be somewhat cumbersome.

Furthermore, the OWL format is not very interoperable with

what are likely to be the other components of a true ARBAC

system (such as other databases). Since only a small portion

of the OWL semantics were needed, it was decided to

generalize the expression of the ARBAC data by allowing it to

be held in other formats, e.g., JSON (Java Script Object

Notation).

Using JSON instead of OWL (with Jena) resulted in a

performance increase. Also, because many data sources

support JSON this approach will make interoperability much

easier. Another implementation change was to use a direct bit

vector approach in Java for policy evaluation, rather than

Prolog. The idea is that by keeping everything in Java (Prolog

requires a call to an external .dll or .so application) and using

the inherent efficiency of bit reasoning, performance would

increase further. So a parallel implementation using the

standard Java BitSet class was created, whereby each

attribute/value pair is assigned a bit position at runtime.

Group membership and ResourceCollection membership were

then pre-computed using a set of bits (i.e., a bit vector). When

an agent selects a Resource, all of the Policies are retrieved

based on the pre-computed ResourceCollections, and these are

compared with the set of the Agent’s Groups. If any Group is

found in any of the policies, then the action is approved.

Given the small set of data available, it was not possible to

determine which approach (Prolog based or bit vector based,

or both) will have the better performance at scale; this

determination will need to be made during a follow-on test and

integration effort.

V. OPTIMIZATION: BIT-ENCODING

Bit representation for ontology constructs (classes,

properties, etc.), subsumption, and rule reasoning must address

two related notions:

1) Efficiency of the representation in space and time. This

includes efficiency of the encoding for storage

purposes, but also compaction/compression techniques.

It also includes the time required to perform the offline,

development time encoding, as well as the time

required to do the matching, subsumption

computations, and automated reasoning performed at

runtime.

2) Incremental encoding, i.e., making modifications

dynamically during runtime to ontology constructs and

rules, potentially recomputing the encodings of

ontology constructs and rules, and then continuing

efficient reasoning.

A. Ontology Constructs

The primary ontology constructs we use are the following:

 Group: A subclass of Collection. There are Classes of

Groups (such as the Federally Funded Research and

Development Center [FFRDC] class) and there are

instances of Classes that are groups (e.g., the instances

of the FFRDC class, such as MITRE, Aerospace, Los

Alamos National Lab, etc.)

 Resource: A resource is any hardware, software, or

service.

 ResourceCollection: A subclass of Collection. There

are Classes of ResourceCollections and there instances

of Classes that are resource collections.

 User: A user (agent) is generally a person, but could

be a software agent.

 Policy: A policy is a set of access constraints on a

Group or Resource created by a User who has the

requisite permissions to create the policy.

 Access: The kind of access a User has to a Resource,

as permitted by a Policy. Examples: Create, Read,

Write, Delete, Execute, etc.

Because we are focusing primarily on “attributes” for

access control, whether or not a User U belongs to a specific

Group is a Boolean attribute, with value either ‘true’ or ‘false’

(of value ‘true’ if the User U is a member of a Group G, else

of value ‘false’). Similarly, whether or not a Resource R is a

member of a ResourceCollection RG is a Boolean attribute. If

it helps us in our processing, even a User U can be considered

a singleton Group, i.e., a specific instance of a Group having

just one member, U.

We assume a User U can create a Policy P (perhaps of a

specific type) that grants another User U’ specific Accesses A

to a Resource R of ResourceCollection RC if the User is a

member of some Group G and Group G ‘owns’ the

ResourceCollection. Other policies may specify Roles, etc.,

which we are not yet addressing here.

The bit-representation for Group (and Resource) constructs

is similar to the following, naïve representation:

Table 1. User Groups: Bit Representation

 G1 G2 G3 G4 G5 G6 G7 G8 G9

U1 1 1 0 0 0 0 0 0 0

U2 0 1 1 0 0 0 0 0 0

U3 0 0 1 1 1 0 0 0 0

U4 1 0 1 1 1 1 0 0 0

B. Subsumption

Subsumption is the relatively simple automated reasoning
that can be done on hierarchies of classes, i.e., the taxonomic
subclass ‘backbone’ of the ontology. These subclass hierarchies
are important for ontologies, but also important for strongly
typed programming languages, which perform subsumption
reasoning as ‘type inference’ over the formal types of
constructions in the specific program.

Ait-Kaci et al [4] proposed a number of bit-representations
that could be used for very efficient subsumption reasoning, by
plungeing the hierarchy of classes (or types), which typically
constitutes a ‘partially ordered set’ (poset), into a boolean
lattice, thus enabling efficient Greatest Lower Bound (GLB)
and Least Upper Bound (LUB) operations, and efficient
transitive closure. In an arbitrary poset, neither the GLB or the
LUB is guaranteed to exist, but there are formal structural
embeddings one can perform on the poset into an order-
preserving structure, a semilattice, a lower semilattice in this
initial case, which preserves the GLB, sometimes called a
meet-semilattice, which says that for any nonempty finite
subset of poset, there is a GLB. Note that the ordering relation
on the elements of the poset (which define the poset) is
typically notated as ≤ , e.g., a ≤ b, where ≤ is reflexive,
antisymmetric, and transitive.

An ontology subclass relation is an ordering relation on the
classes, i.e., reflexive, antisymmetric, and transitive. OWL

provides a top (greatest or most general) and bottom (least or
most specific) class, called respectively Thing and Nothing,
which makes OWL into a language able to model bounded

(semi-) lattices. Bottom is often notated as , with top notated
as ⊤.

C. Encoding Bit Representations of Subsumption and

Inheritance

We will discuss encodings proposed in the literature,

beginning first with a naïve bit matrix representation. For all

of these encodings, we adapt the example used by [17, p. 16-

17], displayed in graph form as the ontology of classes in

Figure 3 (where the isa relation is taken to be synonymous

with the subclass relation). We use this example, rather than

one drawn from our domain ontology, simply because our

ontology does not currently have much depth and no multiple

inheritance, which this example has. Note that these ‘role’

subclasses are not ontologically correct, but have been

accommodated to a simple example.

Fig. 3. Academic Role Ontology

Table 2 displays the naïve bit matrix representation for this

ontology’s subsumption relations. Note that the bit assignment

goes as follows:

1) Initially assign 1 (true) for every class (i, j) (where i is

the row, j is the column) and itself, because every

class subsumes itself. This means there is a diagonal

with value 1 from (1, 1) to (n, n).

2) Then for each cell of the matrix (i, j), if the class i is

an ancestor of class j, assign the value 1, otherwise

assign the value 0.

Table 2. Naïve bit matrix representation of Subsumption

i: row

j: column

Pe

rs

on

St

ud

en

t

E

m

pl

oy

ee

As

so

ci

at

e

Pr

of

es

so

r

Te

nu

re

d

Pr

of

es

so

r

PhD

Studen

t

Teachi

ng

Assista

nt

Person 1 1 1 1 1 1 1

Student 0 1 0 0 0 1 1

Employee 0 0 1 1 1 0 1

Associate

Professor

0 0 0 1 0 0 0

Tenured

Professor

0 0 0 0 1 0 0

PhD

Student

0 0 0 0 0 1 0

Teaching

Assistant

0 0 0 0 0 0 1

 0 0 0 0 0 0 0

This encoding thus is the reflexive, transitive closure of the

(antisymmetric) subclass (isa) hierarchy of Figure 4.
The naïve bit-assignment algorithm as represented in Table

2 is bottom-up, with an implicit ‘bottom’ (). The classes
Employee and Student, and then Person, are the only classes
which have subclasses.

Subsumption between two classes can then be computed in
constant time using a binary AND operation on the bit vectors
of the two classes. The subsumption operator over the bit-
encoded classes is defined as follows.

Definition: Subsumption over Bit-Encoded Classes:

Let x1, …, xn, be classes in a subclass hierarchy,  be an bit-

encoding function, and ⊑ be the subsume relation (where , 

are classes and  ⊑  is read as ‘class  subsumes class ’):

Then the following holds:

i.  (xi) ⊑  (xj)   (xi) AND  (xj) =  (xj)

[the encoding of the first class subsumes the
encoding of the second class if and only if the binary
AND of those encodings is equal to the encoding of
the second class]

ii.  (xj) ⊑/  (xi)   (xj) AND  (xi)   (xj)

[the encoding of the first class does not subsume
the encoding of the second class if and only if the
binary AND of those encodings is not equal to the
encoding of the second class]

Example 1: Does TeachingAssistant subsume
AssociateProfessor?
I.e., does AssociateProfessor occur in the transitive closure of
the subclass relation of TeachingAssistant?
SubsumeS (TeachingAssistant, AssociateProfessor)

= AND (0000001, 0001000) = 00000000, i.e., no.

Example 2: Does Person subsume TeachingAssistant?
Subsumes (Person, TeachingAssistant)

= AND (1111111, 0000001) = 0000001, i.e., yes,
because the result 0000001 = 0000001 (the encoding for
TeachingAssistant.

Example 3: Does Employee subsume Student?
Subsumes (Employee, Student)

= AND (0011101, 0100011) = 0000001, i.e., no,

because the result 0000001  0100011 (the encoding for
Student).

What if one wants at runtime to add a new class
incrementally (dynamically) after the above bit-representation
has been generated at development time? We add the new class
ResearchAssistant to the original ontology, resulting in Figure
4.

Recomputing our bit-matrix, we arrive at the following,
Table 3. Note that we have to add a new bit by creating a new
row and new column for ResearchAssistant, which we add as a
new i+1 row and a new j+1 column into the matrix (but above

Fig. 4. Academic Role Ontology + ResearchAssistant

If we added the new bit as a new row and new column at

the beginning of the matrix, then we would maintain the 1-bit

diagonal we saw in Table 2. In addition, of course, we have to

update the entries in the new Research Assistant column with

their values (1 if an ancestor of Research Assistant, 0

otherwise). The naïve bit-encoding of Subsumption requires

n2 bits.

Table 3. Naïve bit matrix representation of Subsumption with Incrementally
Added ResearchAssistant Class

i: row

j: column

Resear

ch

Assista

nt

Pe

rs

on

St

ud

en

t

E

m

pl

oy

ee

As

so

ci

at

e

Pr

of

es

so

r

Te

nu

re

d

Pr

of

es

so

r

PhD

Studen

t

Teachi

ng

Assista

nt

Person 1 1 1 1 1 1 1 1

Student 1 0 1 0 0 0 1 1

Employee 1 0 0 1 1 1 0 1

Associate

Professor

0 0 0 0 1 0 0 0

Tenured

Professor

0 0 0 0 0 1 0 0

PhD

Student

0 0 0 0 0 0 1 0

Teaching

Assistant

0 0 0 0 0 0 0 1

Research

Assistant

1 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

Ait-Kaci et al [4] propose a number of new methods for
encoding subsumption. Their first method requires a bottom-up
(from the terminal classes to the root class) computing of the
binary OR of the bits assigned to children classes, the result of
which becomes the bit-encoding of their parent classes. New
bits are introduced whenever a parent has just one class and

whenever a false positive subsumption would result. If
incremental updates to the encoding are necessary, there are
potential complications. If one wants to add new leaf (terminal)
class nodes to the hierarchy, such as we did with
ResearchAssistant above, there are no issues. However, if one
wants to add new non-terminal (or root) nodes, there are
complications. If a class Cj is added that has the same
inheriting subclasses as an existing class Ci, then a new bit
must be added to re-encode the existing class and all of its
ancestors too. In addition, any new non-terminal class will have
to have the ancestors of its children classes checked for
conflicting encodings.

For a discussion of other bit-encoding techniques, the
interested reader is directed to [17, pp. 16-23]. There are other
encoding approaches, including interval-encodings. Interval-
based encodings compute non-overlapping codes for the
children within the interval of the parent, but do not support
multiple inheritance.

In fact, although each of the above approaches out-perform

the naïve encoding, all of them have some issues (except

perhaps [17], which relies on binary representation of prime

numbers) with incremental (dynamic) updates, requiring some

recomputation of encodings and determination of conflicts,

which in turn may require recomputation of encodings.

Rules too may be given encodings, but space limitations

preclude a discussion of this topic here, but see [8] for

Boolean satisfiability (SAT) reasoning using bit-matrices.

VI. RELATED WORK

There is much previous related research across multiple

dimensions (access control regimes, policy languages and

approaches, specialized languages (and logics) vs. ontology

approaches, knowledge compilation issues, bit-vector and

other optimization approaches, social network approaches,

privacy vs. security issues and approaches, etc.) that have

influenced our current and impending work.

In order to accomplish our objectives it was necessary to

link a security policy model to a policy language with

sufficient expressive power to ensure logical consistency. We

extend the NIST Role-Based Access Control (RBAC) security

model [15] and related approaches [18-19], as have many

other researchers to include attributes, and extend the Web

Ontology Language (OWL) with additional rules to express

access policy using logic programming, and beyond the

limitations of [20]. Unfortunately, given our own space

limitations here, we cannot do an extensive comparison of our

approach across the multiples dimensions with other

approaches, nor justly describe those other approaches.

In addition, there is extensive research in more general

policy-based approaches that could be employed also for

access control [21-22].

There are other Semantic Web-based approaches (including

[22]), some of which address more specifically social network

types of applications [23, 24].

For implementation in real-time, via a bit-vector or other

efficient encodings that can be used for rapid run-time

reasoning, we’ve looked at [2-6, 7-12, 17]. For bit-vector

representation to support RDF triples, we investigated [11-14].

Our own previous work addressed issues in translating

OWL/RDF ontologies and Semantic Web Rule Language

Rules (SWRL) [25] into logic programming for efficient

runtime reasoning, and employing knowledge compilation

techniques [26-28], which we also generalized to address

services using first-order logic theorem provers and for

ontology alignment [29].

VII. FUTURE WORK

Although we have investigated and implemented some

optimizations, e.g., extensionalization and delayed rule

evaluation, we have only rudimentarily implemented the

second-level of optimization we intended, i.e., the bit-

representation execution at runtime.

If we had additional time, we intended to implement the

prime-number bit-encoding of subsumption described in [17].

In general, for the restricted reasoning we need for access

control policy enforcement as described in this paper, and

given the probable volume of access request determinations

(and thus subsumption and equivalence checks, rule

execution) we foresee needing in a complex collaborative

social network environment such as the MPN, optimized

efficient automated reasoning is necessary. Traditional, more

general description logic reasoners were deemed too slow

(Pellet, etc.) In addition, most proposed bitmap encodings for

subsumption and type reasoning are efficiently statically

initialized and then used, but dynamically updating the

subsumption/type hierarchy, i.e., adding, deleting, modifying

classes and properties (which will happen, under the Open

World Assumption of OWL and first-order logic), leads to

degraded performance and increasingly baroque re-encodings

to avoid conflicts.

Therefore, we would consider implementing the bit-

encoding scheme based on assigning prime numbers to nodes

in the class and property subsumption graphs, as developed by

Preuveneers and Berbers [17, 30]. Adding a new class or

property does not require re-encoding. Furthermore, the

encoding automatically provides us the direction of the

relationship. Modular hierarchies, each separately encoded,

with very efficient subsumption-checking, are the result.

Figure 5 depicts a subclass hierarchy encoded using prime

numbers.

FIG. 5. PRIME NUMBER ENCODING FOR CLASS SUBSUMPTION

In addition to the use of prime numbers, the scheme of [17,

30] defines a compact binary matrix representation of the

inheritance relationships, which we will not go into here.

Evaluation done in [30, p. 32] shows that subsumption

testing in his scheme is much faster than that of some major

existing description logic reasoners, on the order of 250 times

faster than Pellet. An evaluation performed on a different

project we are involved in, written in C/C++ demonstrated

1000% improvement using this method of subsumption

checking over the previous naïve, breadth-first search of the

subsumption graph.

ACKNOWLEDGMENT

© 2013, The MITRE Corporation. All Rights Reserved.

REFERENCES

[1] Obrst, L.; D. McCandless; D. Ferrell. 2012. “Fast Semantic Attribute-
Role-Based Access Control (ARBAC) in a Collaborative Environment.”
The 7th IEEE International Workshop on Trusted Collaboration
(TrustCol 2012), October 14–17, 2012, Pittsburgh, PA.

[2] Abadi, D. J.; A. Marcus; S. Madden; K. J. Hollenbach. 2007. “Scalable
Semantic Web Data Management Using Vertical Partitioning.” In
Proceedings of VLDB, pages 411~422, September 2007.

[3] Ait-Kaci, H. 1984. “A Lattice-Theoretic Approach to Computation
Based on a Calculus of Partially-Ordered Type Structures.” Ph.D thesis,
Computer and Information Science Dept., Univ. of Pennsylvania,
Philadelphia, PA.

[4] Ait-Kaci, H.; R. Boyer; P. Lincoln; R. Nasr. 1989. “Efficient
Implementation of Lattice Operations.” TOPLAS 11-1-1989.

[5] Blandford, D. K.; Blelloch, G. E.; and Kash, I. A. 2003. “Compact
representations of separable graphs.” Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (Baltimore, Maryland,
January 12 - 14, 2003).

[6] Blandford, D. K.; Blelloch, G. E.; and Kash, I. A. 2004. “An
Experimental Analysis of a Compact Graph Representation.” In
Proceedings of ALENEX04.

[7] Caseau, Y.; M. Habib; L. Nourine; O. Raynaud. 1999. “Encoding of
multiple inheritance hierarchies and partial orders.” Computational
Intelligence 15 (1), 50-62.

[8] Dershowitz, N. 2008. “Bit Inference.” Workshop on Practical Aspects of
Automated Reasoning, August, 2008, Sydney. 26-35.

[9] Fall, A. 1995. “Heterogeneous Encoding.” In Proceedings of
International KRUSE Symposium: Knowledge Retrieval, Use, and
Storage for Efficiency, Gerard Ellis, Robert Levinson, Andrew Fall,
Veronica Dahl, eds., Santa Cruz, CA, Aug. 11-13, pp. 134-146 (1995).

[10] Krall, A.; Vitek, J., Horspool, 1997. “Near optimal hierarchical encoding
of types.” 11th European Conference on Object Oriented Programming
(ECOOP’97). Springer (1997).

[11] McGlothlin, J. P.; L. Khan, B. Thuraisingham. 2011. “RDFKB: A
Semantic Web Knowledge Base.” IJCAI, 2011.

[12] McGlothlin, J. P.; L. Khan. 2008. “RDFVector: A Scalable Data Model
for Efficient Querying of RDF Datasets.” http://
www.utdallas.edu/~jpm083000/ssDBM.pdf.

[13] McGlothlin, J.P.; L. Khan. 2010b. “Efficient RDF data management
including provenance and uncertainty.” IDEAS, 193-198, August 2010.

[14] McGlothlin, J. 2010. “RDFVector: An Efficient and Scalable Schema
for Semantic Web Knowledge Bases.” PhD Symposium, 7th Extended

Semantic Web Conference (ESWC 2010), Heraklion, Greece. May 30 –
June 3, 2010..

[15] http://csrc.nist.gov/groups/SNS/rbac/.

[16] Neumann, T.; G. Weikum. 2009. “RDF-3X: a RISC-style engine for
RDF.” In Proc. of VLDB, pages 647-659, September 2009.

[17] Preuveneers, D.; Berbers, Y., 2006. “Prime numbers considered useful:
Ontology encoding for efficient subsumption testing,” Tech. Rep.
CW464. http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW464.
Department of Computer Science, Katholieke Universiteit Leuven,
Belgium (October 2006).

[18] Sandhu, R. 1998. “Role-based access control.” In M. Zerkowitz, editor,
Advances in Computers, volume 48. Academic Press.

[19] Sandhu, R.; E. J. Coyne; H. L. Feinstein; and C. E. Youman. “Role-
based access control models.” 1996. IEEE Computer, 29(2):38–47,
February 1996.

[20] Finin, T.; A. Joshi; L. Kagal; J. Niu; R. Sandhu, W. Winsborough; and
B. Thuraisingham. 2008. “ROWLBAC: representing role based access
control in OWL.” In Proceedings of the 13th ACM symposium on
Access control models and technologies (SACMAT '08). ACM, New
York, NY, USA, 73-82.

[21] Tonti, G.; J. M. Bradshaw; R. Jeffers, R. Montanar; N. Suri; and A.
Uszok. 2003. “Semantic web languages for policy representation and
reasoning: A comparison of kaos, rei, and ponder.” 2nd International
Semantic Web Conference (ISWC2003). Springer-Verlag.

[22] Uszok, A.; J.M. Bradshaw; J. Lott; M. Breedy; L. Bunch; P. Feltovich;
M. Johnson; H. Jung. 2008. New Developments in Ontology-Based
Policy Management: Increasing the Practicality and Comprehensiveness
of KAoS, IEEE Workshop on Policies for Distributed Systems and
Networks, 145-152.

[23] Carminati, B.; E. Ferrari; and A. Perego, “Rule-based access control for
social networks,” in Proc. OTM 2006 Workshops, ser. LNCS, vol. 4278.
Springer, Oct 2006, pp. 1734–1744.

[24] Masoumzadeh, Amirreza; James Joshi. 2010. “OSNAC: An Ontology-
Based Access Control Model for Social Networking Systems.” Social
Computing (SocialCom), 2010 IEEE Second International Conference
on Social Computing, 20-22 Aug. 2010, Minneapolis, MN, 751 – 759.

[25] Horrocks I.; Patel-Schneider, P.; Boley H.; Tabet, S.; Grosof, B.; Dean,

M. 2004. “SWRL: A Semantic Web Rule Language Combining OWL
and RuleML.” /www.w3.org/Submission/SWRL/ .

[26] Samuel, K.; L. Obrst; S. Stoutenberg; K. Fox; P. Franklin; A. Johnson;
K. Laskey; D. Nichols; S. Lopez; and J. Peterson. 2008. “Applying
Prolog to Semantic Web Ontologies & Rules: Moving Toward
Description Logic Programs.” Journal of the Theory and Practice of
Logic Programming (TPLP), M. Marchiori, ed., Cambridge University
Press, Volume 8, Issue 03, May 2008, 301-322.

[27] Samuel, K.; L. Obrst. 2007. “Answer Set Programming: Final Report on
a Comparison Between ASP and Prolog for Semantic Web Ontology and
Rule Reasoning.” October, 2007. MITRE MTR090069.

[28] Obrst, L; Stoutenburg, S; D. McCandless; D. Nichols; P. Franklin; M.
Prausa; R. Sward. “Ontologies for Rapid Integration of Heterogeneous
Data for Command, Control, & Intelligence.” Chapter in: Obrst, Leo;
Terry Janssen; Werner Ceusters, eds., 2010. Ontologies and Semantic
Technologies for the Intelligence Community. Amsterdam, The
Netherlands: IOS Press.

[29] McCandless, Dru; Leo Obrst. 2009. “Dynamic Web Service Chaining
using OWL and a Theorem Prover.” 3rd IEEE International Conference
on Semantic Computing, Berkeley, CA, USA - September 14-16, 2009.

[30] Preuveneers, D.; Y. Berbers. 2008. “Encoding Semantic Awareness in
Resource-Constrained Devices,” IEE Intelligent Systems, March – April,
2008.

