
1

Supporting evacuation missions with ontology-based
SPARQL federation

Audun Stolpe, Jonas Halvorsen and Bjørn Jervell Hansen
Norwegian Defence Research Establishment (FFI)

P O Box 25
2027 Kjeller, Norway

Email: {audun.stolpe | jonas.halvorsen | bjorn-jervell.hansen}@ffi.no

Abstract—We study ontology-based SPARQL federation in sup-
port of coordinated action by deployed units in military oper-
ations. It is presumed that bandwidth is limited and unstable.
Thus, we need an approach that generates few HTTP requests.
Existing techniques employ join-order heuristics that may cause
requests to multiply as a factor of the number of joins in a
query. This can easily lead to an amount of traffic that exceeds
network capacity. We propose an approach that builds an in-
memory excerpt of the remote sources, sending one request to
each source. A query is answered against this excerpt, which is a
provably sound and complete representation of the sources wrt.
query answering. The paper ends with a case study involving
three military sources used for planning evacuation missions.

I. INTRODUCTION

The planning of evacuation missions is a complex and impor-
tant process in military operations. One of the most challenging
aspects, is making all necessary information available to the
decision makers. These information fragments will typically
be distributed across different systems.

This is particularly the case when the military force con-
ducts its operations according to network-based concepts, like
NATO’s Network Enabled Capability, henceforth NNEC [1].
The primary objective when conducting operations according
to this concept, is to support the creation of a high degree of
shared situational awareness among decision makers in order
to obtain increased mission effectiveness. A prerequisite for
achieving this, is an extensive information sharing and a robust
scheme for information integration, enabling decision makers
to retrieve and utilise all relevant information when needed.

So far, the emphasis of the technical work on NNEC has
been on how to make information available throughout the
environment. However, in order for NNEC to be of use
to decision makers, the challenge of establishing a robust
scheme for information integration ultimately also needs to
be addressed. This is the focus of the research reported on in
this paper.

We present an information integration approach that combines
query rewriting with data federation, and we study it in relation
to an example from military evacuation planning based on live
reporting of incidents over IP radio networks.

The main contribution of this paper consists in defining a
novel federation strategy specifically designed for domains
that share the general characteristics of this case. The most
important characteristics are firstly that bandwidth is limited
so the total communication costs induced by the number of
HTTP request is a non-negligible factor, and secondly that the
network topology is dynamic, i.e. sources may come and go.
Our aim is thus to define a federation strategy that is sound and
complete with respect to query answering, issues a minimal
number of HTTP requests, and is compatible with run-time
detection of sources.

The paper is organized as follow: In Section II we identify a
list of tentative desiderata that our federation strategy should
satisfy. The desiderata points to using an ontology-based data
access paradigm, which is explained in Section III. Section
IV outlines our solution, which is based on querying against
an excerpt, or cropping, of the remote sources relative to an
incoming query. The case study is presented in Section VI, and
the main experiences drawn from the case study is presented
in Section VII.

The paper assumes familiarity with W3C’s Semantic Web
technology stack, in particular RDF, OWL, and SPARQL.
Readers not familiar with these technologies are referred to
[2], [3], and [4] for an introduction.

II. CHARACTERISTICS OF THE DOMAIN

The NNEC concept presupposes a network-based environment
in which information about own and enemy units is typically
distributed across several autonomous data sources contributed
by coalition members. In order to support evacuation planning,
these information fragments need to be integrated in order for
the decision makers to obtain the highest possible degree of sit-
uational awareness. This involves tackling some idiosyncratic
challenges:

• The information systems are in general semantically het-
erogeneous, especially in coalition operations, and cannot
be accessed in a coherent and unified way,

• the underlying communication network often relies on IP
radios, and is hampered by limited bandwith, latency, and
limited range,

2

• the network topology is highly dynamic, meaning that
information systems can appear and disappear at any time,
and

• the shared information is mission-critical, which makes
it crucial that the integration scheme yields correct and
exhaustive data.

These characteristics means that we want to define an infor-
mation integration approach that:

A allows a user to access available sources in a unified way,
B utilises the available bandwith efficiently, particularly by

restricting the number of HTTP requests to the remote
sources,

C allows the relevant sources to be discovered at run-time,
and

D guarantees the soundness and completeness of query
answering.

III. ONTOLOGY-BASED DATA ACCESS

Based on the desiderata from section II, we decided to use an
ontology to mitigate heterogeneities and to provide uniform
access to the data. That is, we based our approach on the
paradigm usually called ontology-based data access in which
a conceptual model—the ontology—is used to express the
relationship between the content of the respective sources, and
to act as a single query interface towards them.

According to the W3C Web Ontology Working Group1, an
ontology defines a set of concepts or term used to describe
and represent some domain of information in an abstract way
that gives a formal semantics to the data in question. More
specifically, an ontology gives the semantics of the data in the
form of a set of logical axioms that explicate the relationship
between classes of data items, and it enables computers to
reason over the data as part of the process of answering a
query. One particular form that this process can take, is that
in which a query formulated in terms of the concepts of the
ontology is successively refined until the query can be executed
directly against the data. This is usually referred to as query
rewriting and forms the basis for our approach, as explained
in the next section.

Ontology-based data access is useful in all scenarios in which
accessing data in a unified and coherent way is difficult. This
may happen for several reasons. The data sources may have
been developed for different purposes by different agencies
or institutions, may not have a coherent design, and may not
record similar types of information in the same manner. A
well-designed ontology gives a unified view of the domain in
terms of the concepts that are of interest to the user.

IV. OUTLINE OF APPROACH

Our federation engine is designed to be suitable for a dynamic
network topology, in accordance with our listed desiderata.

1http://www.w3.org/2001/sw/WebOnt/

To that end, sources are selected at query time based on the
outcome of the reasoning process, by inspecting DNS records
that are multi-casted in the network (cf. section VI.). The
entire federation process can thus be seen as comprised of
two distinct steps. First, the query is rewritten into a query
expressed directly in terms of the data according to the domain
model expressed by the ontology. Next, the rewritten query
is decomposed into sub-queries that yield a set of mutually
exhaustive partial answers extracted from each of the selected
sources.

It is not automatically the case, however, that the above men-
tioned steps are separable. That is, depending on the expressive
power of the ontology language, reasoning may require data-
access. This is not the case for the class of ontology languages
that are first-order rewritable (cf. [5], [6]). This notion was first
introduced by Calvanese et al. ([5]) in the context of the class
of ontology languages called description logics. A description
logic L—more generally an ontology language—is first-order
rewritable if, for every ontology Σ expressed in L and a query
Q , Q can be compiled into a first-order query QΣ that A)
compiles away all concepts from the ontology Σ, and B) is
such that given a data repository R, QΣ evaluated over R
yields exactly the same result as Q evaluated against R and
Σ.

First-order rewritable ontology languages is a crucial presuppo-
sition behind our approach. It is important precisely because it
ensures that the reasoning process can be decoupled from data
access. This has two hugely beneficial consequences: First,
the complexity of reasoning remains unaffected as data size
increases. In other words the computation time allocated to
reasoning will not vary with changes in the network topology
and/or availability of sources—recall that we do not assume
these to stay fixed. Secondly, since reasoning can be decoupled
from data access, it does not affect the federation process per
se. That is, source selection can be performed independently of
the reasoning process, which means, among other things, that
a query which is run repeatedly will only have to be rewritten
once.

As always there is a price to pay, though. The property of
first-order rewritability imposes a serious constraint on the
expressivity of an ontology language, and, as explained in
section VII, must be very carefully selected in order to be able
capture the salient aspects of our case. In particular, it turns
out that none of the standard fragments of the W3C-endorsed
ontology language OWL will do.

As regards HTTP-minimality (by which we mean keeping the
number of required HTTP requests as low as possible), we
found existing approaches to federated query processing not
to be well suited. One of the main reasons is that they all rely
on forms of join-order heuristics that tends to multiply the
number of HTTP requests as a factor of the depth and number
of joins: a standard distributed join algorithm will evaluate a
query iteratively one triple at a time, while propagating values
in a nested loop join fashion. This multiplies HTTP request in
proportion to the result sets returned by evaluating each join

3

Rewrite

Q Σ

QΣ

Distribute

R2 RnR1

Crop

Evaluate

Answer

. . .

Figure 1. System overview

argument.2 Admittedly, there are several improved versions of
this algorithm on offer. The bound join technique implemented
in FedX [9], for instance, groups several instances of a join
argument in a single subquery using the SPARQL UNION
construct. This reduces the number of request with a factor
equivalent to the the number of instances in the grouped query
(ibid.).3 Yet, experimental evaluation shows that the number
of HTTP request can still grow quite fast in the number
of joins.45. What is common to all these approaches is that
the number of HTTP request varies in the number of results
returned by the sub-queries. It is a design goal of our approach,
in contrast, to make a factor of the size of the query only.

To that end, we designed our federation engine to evaluate
the query, not against the sources directly, but against an
excerpt, or cropping as we call it, that is pulled from the
sources by sending a single HTTP-request to each. Unlike
traditional warehousing strategies, however, our local copy is
not persisted, but exists only in-memory for the duration of
the query execution process. It is essentially a snapshot of that
part of the remote sources which is relevant for answering
the query in question. In realistic cases, the cropping is much
smaller than the total amount of data that it is extracted from.

An overview of the resulting system, is shown in Figure 1: the
system takes as input a SPARQL query Q, and a collection
of aligned ontologies Σ, which are used by the rewriter to
produce the query QΣ. This rewritten query is next handed to
the federator component which performs service discovery at

2DARQ [7] and SPLENDID [8] both implement a version of this algorithm.
3Similar techniques are considered in [8] and [10]
4See e.g. the results for FedX on Life Sciences 3 query from the FedBench

suite.
5Another notable optimization is the star-shaped pattern technique of [11].

Numbers of requests are not reported in this study however.

run-time (cf. Section VI) to identify live and relevant sources.
Relevance here means signature overlap, where a signature
is understood as a set of RDF properties. The extent of the
overlap between the signature of the query and the signature
of a given endpoint determines a SPARQL CONSTRUCT query
which will be routed to that endpoint.

The CONSTRUCT queries are designed to adhere to a logical
form which is sufficiently structured to enable us to guarantee
the soundness and completeness of the query answering pro-
cess wrt. the set of sources R, as explained in more detail in
the next sections.

Taken together with the obvious minimality of our approach
wrt. the number of HTTP requests—only a single request is
sent to each source—as well as the relevance-based per-query
discovery of sources, we conclude that our approach meets all
our tentative desiderata A) to D).

V. PROPERTIES OF THE CROPPING

In this section we formally define the notion of the cropping
of a distributed set of sources R relative to a query Q, and we
state its essential properties. We shall assume familiarity with
SPARQL syntax and semantics (cf. [12]).

Notation. We use Ri, where i is in some index set I , to denote
RDF graphs—variably referred to as sources, repositories or
endpoints. A SPARQL SELECT query is a pair 〈P, ~x〉, where
P is a SPARQL graph pattern and ~x a vector of elements of
variables. Similarly, a CONSTRUCT query is a tuple 〈T, P 〉,
where T is a basic graph pattern and P is a union of such.
T will be identified with the CONSTRUCT block of the query,
aka. the template, and P with the WHERE block, aka. the query
pattern. We shall allow ourselves the convenience of blurring
the distinction between SPARQL queries on the one hand and
sets and families of triple patterns on the other. Where Q :=
〈P, ~x〉 is a SELECT query and G and RDF graph we denote
the result of evaluating Q against G as Q(G), and similarly
for CONSTRUCT queries. The proofs of the claims that follow
can be found in technical report [13].

As mentioned in the previous section, our approach to federa-
tion is signature-based in the sense that the RDF properties that
are found in a query are used for routing different sub-queries
to different endpoints. This is a common strategy (cf. [8], [9])
for which we claim no originality. Now, given a query pattern
P the relevant subset of P in relation to a source Ri is defined
as the maximal subset of P whose signature is contained in
the signature of Ri. We shall denote this set as ρ(P, i).

Recapitulating briefly, our federation engine is designed to
be HTTP-minimal, as well as sound and complete wrt. to
query answering over the selected sources. A strategy that
supports all three is to execute the query against an in-memory
representation of the remote sources rather than against the
sources themselves. More specifically our federation engine
routes a single CONSTRUCT query to each of the selected
sources—achieving HTTP minimality—whereas the logical

4

form of this construct query is defined in such a manner as
to guarantee that the answer to the query assembled from the
selected sources is both correct and complete with respect to
those sources. Here soundness and completeness means that if
R is a set of sources selected for federation, then the answer
that the federator provides to a query Q should be exactly the
same as the one that would be obtained were Q to be evaluated
conventionally over a single repository holding the union of
the datasets in R. To the best of our knowledge, our strategy
is currently the only one that guarantees that this is the case.

The logical form in question is in turn defined by distinguish-
ing between exclusive and non-exclusive triples in a query
pattern P . Exclusive triples are those that are satisfied, if at
all, at one endpoint only. Non-exclusive triples, on the other
hand, may be satisfied by two or more. Exclusive triples can
safely be grouped together and executed against the source
for which it is exclusive in as a single conjunctive pattern.
Non-exclusive triples, however, must be shipped to the remote
sources as separate UNION clauses. This holds even if a group
of triple patterns are relevant to exactly the same sources since
an answer to the original query may require joining triples
across these sources. This gives rise to the following definition
of the set of clauses induced by P and Ri:

Definition 1 (Clause set): For Ri a source and P a query
pattern: s(P, i) := {ε(P, i)} ∪ {{t} : t ∈ ρ(P, i) \ ε(P, i)}

Here ε(P, i) denotes the exclusive group of a pattern P relative
to Ri.

Now, the basic idea behind our federation strategy is to use the
set of clauses induced by P and Ri to define a CONSTRUCT
query that extrapolates the part of Ri that is relevant for
answering P . The most straightforward way to do that may
seem to be to use the clause set itself as a query pattern, whilst
using the set-theoretic union of its elements as a template. Call
this the naive strategy. Interestingly, the naive strategy, whilst
complete, is not sound. Consider the following rather abstract
example:

Example 1: Let G be the RDF graph containing only the
two triples s := (c1, p, d1) and t := (c2, q, d2), and assume
a clause-set {{(?s, p, ?o)}, {(?s, q, ?s)}}. The corresponding
naive CONSTRUCT query is:
CONSTRUCT {?s q ?o. ?s p ?o.}
WHERE {{?s p ?o} UNION {?s q ?o}}

Executing this query against G will produce a graph containing
the triple (c1, q, d1).

The example shows that the naive strategy may create bindings
in the resulting graph that do not exist in the graph that is
queried. To counteract this effect it is necessary to standardise
apart the elements of the clause-sets before using taking the
union and using it as a CONSTRUCT template. To this end we
introduce the notion of a separation function:

Definition 2 (Separation function): Let S := {c1, . . . , cn} be
a clause set, and let σi be a uniform substitution of variables
for variables in ci. A separation function f for S is a function

s. t. 1) f(S) = {σ1(c1), . . . , σn(cn)}, and 2) σj(?x) 6= σk(?x)
for every ?x ∈ dom(σj) ∩ dom(σk).

Our CONSTRUCT queries now become:

Definition 3: For a set of sources R := {Ri}i∈I and a query
pattern P : C (P, i) = 〈

⋃
f(s(P, i)), f(s(P, i))〉 where f is

some separation function for s(P, i).

Example 2: Suppose we have two endpoints JOCWatch and
MedWatch,6 and the following conjunctive graph pattern P :
?mission medics:missionType medics:Rescue.
?mission medics:jocWatchIncident ?incident.
?incident jocw:status ?stat.

Suppose further that each property prefixed by medics
belongs to the signature of MedWatch, that each property
prefixed by jocw belongs to the signature of JOCWatch, and
that the jocw:status property belongs to both. The queries
that are routed to the respective endpoints are then:

MedWatch:
CONSTRUCT {
?_1 medics:missionType medics:Evac.
?_1 medics:jocwIncident ?_2.
?_3 jocw:status ?_4. } WHERE {
{ ?_1 medics:missionType medics:Evac.
?_1 medics:jocwIncident ?_2.}
UNION

{ ?_3 jocw:status ?_4.}}

JOCWatch:
CONSTRUCT {
?_1 jocw:instigator ?_2.
?_3 jocw:status ?_4.} WHERE {
{ ?_1 jocw:instigator ?_2.}
UNION

{ ?_3 jocw:status ?_4.}}

The cropping may now be defined as follows:

Definition 4 (Cropping): Put Q := 〈P, ~x〉 and R = {Ri}i∈I .
Then A R

Q :=
⋃

i∈I C (P, i)(Ri).

We now have:

Theorem 1 (Soundness/Completeness): Let R be any set of
sources, then Q(

⋃
R) = Q(A R

Q) for any SELECT query Q.

Note that here Q is the SELECT query that is being posed
to the system, whereas A R

Q , i.e. the cropping, is the result
of assembling the results of the CONSTRUCT queries that are
required for providing an excerpt guaranteed to answer it.

As regards time complexity, since every CONSTRUCT query
C (P, i) is in union normal form, Corollary 1 of [12] im-
mediately entails that the cropping can be built efficiently.
In our actual implementation, the CONSTRUCT queries that
are allocated to the respective endpoints are, moreover, all
executed in parallel, so time is not a precarious measure.

A. Restricting the size of the cropping

Although time is not a precarious measure, the size of result
sets quickly becomes an issue. The CONSTRUCT queries that

6These systems are described in VI

5

are passed around to the remote endpoints, if not constrained,
may well distribute a triple pattern (?a, rdf : type, ?b) to all
remote endpoints, in effect requesting huge chunks of the data
contained in each.

Now, there is no need in our approach for join-ordering
heuristics in the conventional sense, since, per the approach,
joins are either executed remotely, or executed locally by
a standard query processing engine after the cropping has
been built. Rather, what we do, is to build the cropping
incrementally by assessing the relative selectivity of triple
patterns and processing the most selective ones first. We can
only describe this procedure in general outline here:

The selectivity of a triple pattern may be assessed along several
dimensions. For instance, studies show that a triple pattern with
a literal in object position will usually be more selective than
one with a URL in the same position [14]. Moreover, triple
patterns can be ordered in a plausible sequence of decreasing
selectivity based on the distribution, and position, of variables
in the pattern (? denotes a variable):

(s, p, o) ≺ (s, ?, o) ≺ (?, p, o) ≺ (s, p, ?) ≺ (?, ?, o) ≺
(s, ?, ?) ≺ (?, p, ?) ≺ (?, ?, ?)

The entire set of heuristic rules that we have used in our
solution can be found in [14].

Now, the idea is to build the cropping in layers by employing
the following three-step procedure: 1) construct the graph
corresponding to the most selective patterns pertaining to each
endpoint 2) extract variable bindings from the cropping so far,
and 3) pass them on to the next iteration as constraints for the
next round of queries.

Step 2, the extraction of variable bindings, is realized by re-
using the triple patterns as SELECT queries that are evaluated
against the cropping as it exists so far, whereas the propagation
of values from one layer to the next is realized with the
VALUES feature of SPARQL 1.1, which allows a set of
bindings to be shipped with a query in order to constrain the
answers.

Our procedure is designed to treat each exclusive group as
an atomic unit, since exclusive groups are likely to be more
selective as a set. For the same reason, they are given maximum
priority, That is, the first layer of the incremental construction
of the cropping consists of the result of executing the exclusive
groups as CONSTRUCT queries. The subsequent layers are then
constructed from the non-exclusive patterns by rating them
according to the heuristic criteria.

This procedure is sufficient to ensure that very unconstrained
patterns such as (?s, ?p, ?o) will be processed late, when
bindings are available for some of its variables. It can also
be tuned to give low priority to predicates from existing RDF
vocabularies that are known to have a low selectivity rate,
such as e.g. rdf : type or dcterms : title. The procedure
preserves the soundness and completeness of the cropping wrt.
the underlying sources, and, although the number of HTTP
request is no longer minimal it is constant in a small factor of

the number of triple patterns in the original query.

VI. CASE

The case we use to exemplify our approach is based upon the
following scenario: A military analyst is monitoring planned
medical evacuation flight missions, and is on the lookout for
missions that might be threatened by enemy activity. If this
is the case, she is also interested in finding friendly units
able to counter the particular threat. More specifically, the
information requirement is the following: Find all medical
evacuation missions and friendly units such that a) the mission
can be classified as being threatened; and b) that the friendly
unit can handle the specific type of threat that the enemy poses.

Normally, in order to obtain an answer to this information
requirement, the analyst has to keep an eye on several systems,
as information about evacuation flights and information about
enemy activity are usually not kept in the same system. With
the aid of a system as outlined so far in this paper, however,
the analyst can pose a query formulating what she is looking
for and let the information integration system take care of the
rest.

To evaluate the approach and the case outlined above, we
conducted an experiment at NATO CWIX 20137 set as close
as possible to the dynamic and multinational environment of
NNEC. The experiment involved three operational information
systems: 1) JOCWatch, information on incidents of relevance
to the command in an event log, 2) MedWatch, a system for
medical mission tracking designed to support the planning,
logging and monitoring of medical evacuation missions, and
3) Track Source, a unit tracking service providing times-
tamped geopositional information regarding friendly units in
the field. The information in MedWatch and JOCWatch were
made available through SPARQL endpoints by using D2R [15],
while the Track Source service had a native SPARQL interface.
In addition, all sources were supplied with a service description
according to the SPARQL 1.1 specification, and each source
made available its ontology at an URL described in the service
description.

Our prototype system performed service discovery using

• mDNS8 for broadcasting and discovering the presence of
information sources,

• DNS-SD9 for high-level description of the source in
terms of pointers to query endpoint location and content
description location, and

• the SPARQL 1.1 service description and VoID10 vocabu-
laries for describing source content.

7Coalition Warrior Interoperability eXploration, eXperimentation and eX-
amination, eXercise – an annual NATO event aimed at improving alliance-wide
interoperability

8http://www.multicastdns.org/
9http://www.dns-sd.org/
10http://www.w3.org/TR/void/

http://www.multicastdns.org/
http://www.dns-sd.org/
http://www.w3.org/TR/void/

6

jw:Hostile <event>

<instigator> <incident> jw:SAFIRE

med:Mission <mission>

<track> <unit> nf:Artil

<posdata> “49.12352” “51.76352”

jw:instigator
jw:incident

rdf:type
rdf:type

rdf:type

med:incident

nf:unit rdf:type

nf:posinf

nf:lat

nf:lon

useront:canHandle

JOCWatch

MedWatch

TrackSource

Figure 2. Conceptual relationship between data sources

This approach addressed the NNEC needs as outlined in
section II, and had the advantage that it was independent
of a central registry, thus eliminating the issue of network
fragmentation.

The relationship between the information sources in our ex-
periment is illustrated in Figure 2. In the figure we see that
MedWatch missions are (potentially) related to JOCWatch
events through a shared incident. Furthermore, the JOCWatch
events are typed according to category e.g. as a SAFIRE event,
which is an event that involves hostile surface-to-air fire. In the
figure we also see that units in the Track Source are typed
(e.g. as Artillery), and that it contains positional data.
Additionally, in the figure, a stipulated line is drawn from
Artillery to SAFIRE, indicating that, units of the former
kind are equipped to counter those of the latter. This relation
does not actually belong to the data, but is defined in the user
ontology useront, and is key to the formulation of the user’s
information need.

The experiment included four main ontologies: a JOCWatch
ontology, a MedWatch ontology, a Track Source ontol-
ogy, and an ontology containing the concepts used by the user
of the system.

In this particular case, the user ontology is derived from and
expresses the data models of the respective sources. We are
thus assuming that, although available sources may come and
go, we know their data models. This is not overly unrealistic,
since NATO-wide standardisation is part of the NNEC con-
cept. The assumption means that we do not have to match
ontologies at run-time. A user ontology less tightly coupled
with the source ontologies and run-time ontology matching is
something we plan to look more into in future work.

Concept Definition
ThreatenedMission MedWatch missions that are related to a

ThreateningIncident
ThreateningIncident All JOCWatch incidents that are related to a

ThreateningEvent
ThreateningEvent All JOCWatch events that are both a

MilitaryOperation (from the JOCWatch
ontology) and a HostileEvent

HostileEvent All events that has a HostileInstigator
HostileInstigator All event participants that are classified as being

hostile.
Relation Definition
canHandle A relation between a military unit type and the

type of events those units types are equipped to
handle.

hasEvent If a mission involves an incident, and there exists
an event that belongs to the same incident (inverse
property), then the event is also related to the
mission

Table I. RELEVANT DEFINITIONS IN THE USER ONTOLOGY

SELECT ?mission ?unit
WHERE{

?mission a useront:ThreatenedMission.
?mission useront:hasEvent ?event.
?event a useront:ThreateningEvent.
?event wgs84:lat ?elat.
?event wgs84:long ?elong.
?unit useront:canHandle ?event.
?unit useront:hasPosition ?pos.
?pos wgs84:lat ?ulat.
?pos wgs84:long ?ulong.

}

Figure 3. SPARQL query representing the information request

Given the user ontology, the information requirement described
earlier can now be expressed by the query in Figure 3. 11

Here ThreateningEvent, hasEvent, canHandle, and
hasPosition are terms specific to the user’s vocabulary, see
table VI. Posing this query to any of the information sources
would not return any answers. In our experiment, this query
was decomposed and distributed as per the approach outlined
earlier.

The main motivation behind this experiment was to test
whether it is feasible to provide a decision maker with the
means to request information using her own terms and without
presupposing detailed knowledge about a fixed set of sources.
This creates a coupling between the requesting system and the
information sources that is loose enough to adapt to a changing
network topology, something that should be highly relevant in
the NNEC environment. Our strategy of combining once-per-
query federation with rewriting worked well for our sample
case, and proves that the idea is sound in general outline. To
be sure, if the system is to to scale well—both in terms of
efficiency and usability—there are some serious issues that
need to be addressed having to do with the expresiveness of
the ontology language and the complexity of reasoning in it.
We record some findings in the next section.

11In reality, we apply filtering of friendly units based on distance from
events using the haversine formula and a threshold value. As this does not
contribute to understanding the general approach we have left it out of the
example.

7

VII. EXPERIENCES AND OBSERVATIONS

As explained in section IV, it is an essential presupposition
of our approach to federation that the ontology that is used
to provide access to the underlying sources be expressed in
a first-order rewritable language. This is necessary in order
to separate reasoning from source selection, thus making the
system able to adapt to a dynamic network topology by
selecting sources at run-time.

Yet, it is not given that the structure and relationship between
the sources that we selected for our case-study, as illustrated
in Figure 2, can in fact be expressed in a first-order rewritable
language.

Choosing an ontology language in the DL-Lite family of
description logics would have been natural for several reasons:
First,these languages are specifically designed to stay within
the boundaries of first-order rewritability. Secondly, DL-Lite
forms the basis of the W3C-endorsed QL language profile
of OWL 2, and so has an XML serialization, and enjoys the
status of an official recommendation. Finally, several efficient
rewriters already exist for the DL-Lite family of languages,
which, if we could use them, would of course leverage the
burden of implementing our own federation engine.

As it turns out, however, our case cannot be expressed in any
of the standard OWL2 profiles, nor in any other description
logic we are currently aware of. This is due to a combination
of features exemplified by the structure of our sources. Refer-
ring to Figure 2 there are mainly two sources of expressive
complexity:

1) As indicated by the stipulated arrow labelled
useront:canHandle connecting TrackSource
to the JOCWatch database, we wish to add axioms
to the ontology that classify which kind of vehicle
or unit that is equipped to counter which kind of
hostile event—for instance artillery in the case of a
surface-to-air attack. Encoding this knowledge in the
ontology is necessary in order to enable the user to
query the sources for available military support within
a given diameter from a threatened position. However,
it requires that we be able to state in the ontology
that certain combinations of unit types and events
constitute sufficient conditions for the unit and event in
question to stand in the canHandle relation. Stated
more formally, we need to have axioms of the form
∀x∀y.Artillery(x)∧SAFIRE(y)→ canHandle(x, y),
for all the appropriate combinations of units and events.

2) Presupposing that the canHandle relation has been
axiomatized, we further need to express in the ontology
that finding the position of a unit involves traversing the
TrackSource graph from the reported latitudes and
longitudes through the relations nf:posinf, nf:unit
and rdf:type via useront:canHandle to an as-
sociated hostile event. This is a fairly long and intricate
path that requires traversing relations forwards as well as

backwards (i.e. traversing the inverse of the relation).

The problem with 1) is that it has a binary predicate in the
conclusion. For that reason, it cannot be expressed as a class
inclusion axiom. A description logic axiom is either a class
axiom or a relationship axiom (aka. role axiom) but cannot be
a mix of the two. Indeed, a class inclusion axiom—irrespective
of the particular brand of description logic that is being used—
cannot, by design, express cross-references between antecedent
and consequent in two or more variables, as our axioms
require.

Description logics typically allow us to state axioms like the
following (in description logic notation):

• Artillery v ∃canHandle.SAFFIRE
• Artillery v ∀canHandle.SAFFIRE

At first glance, these may seem to come close to what we
wish to say, but that is not really the case. The first says that
an artillery unit can handle some surface-to-air-fire event, but
it does not identify the event. The second says that an artillery
unit can only handle surface-to-air-fire events, although it may
not be able to handle all of them. What we wish to say
though us that all artillery units can handle all surface-to-air-
fire events.

Taking stock, there is thus, to the best of our knowledge, no
first-order rewritable description logic capable of expressing
the structure and interrelationship between our selected sample
of military information sources. As it turns out, though, there
is a different family of ontology languages altogether that
is sufficiently expressive for our needs, namely the family
of general existential rules aka. existential datalog [6], more
specifically the language of weakly recursive datalog. Weakly
recursive datalog is strictly more expressive than any first-
order rewritable description logic—and more importantly, it
is sufficiently expressive to express 1) and 2) above, thus
capturing the salient features of our case. Our federation engine
is therefore equipped with a rewriter that expects an ontology
to be encoded in weakly recursive datalog.

Although, this choice is more or less forced upon us by
the characteristics of the case, it does not mean of course
that the choice of recursive datalog as our ontology language
does not come with its own set of drawbacks. First of all,
existential datalog in general does not currently have the kind
of institutionalized support that the OWL family of languages
enjoys. Secondly, and much for the same reason, it has far
less endorsement from the software industry in terms of tool
support.

In fact, we could not find an existing rewriter for weakly
recursive datalog, and therefore had to build one from scratch.
Alas, implementing a correct rewriter does not entail that one
has implemented an efficient one, and although queries over
weakly recursive datalog ontologies are first-order rewritable,
the size of the rewriting itself may be exponential in the size
of the original query. Thus, without a considerable amount
of research being devoted to optimization, the rewriter is not

8

likely to perform well for any large class of cases. Theoretical
results are encouraging, though. In particular, results from [16]
shows that there is a minimal rewriting of any query over a set
of weakly recursive datalog rules. Computing such a minimum,
however, remains a topic for future research.

VIII. RELATED WORK

Several studies have addressed the problem of decomposing
a SPARQL query into sub-queries that can be allocated to a
distributed set of remote sources. Notable examples include
[17], [7] [18], [19], [20], [9], [11] and [8]. All of these
studies belong to what we would call the join-order heuristics
paradigm, and, unlike the present paper, none gives particular
attention to establishing framework that is both sound/com-
plete and request-minimal. Moreover, the listed reports focus
exclusively on federating queries that are expressed directly in
terms of the data. To the best of our knowledge there are very
few contributions that address the question of how to combine
query federation with reasoning, where reasoning cuts across
several sources.

IX. CONCLUSION

In this paper we have established a sound, complete and
request-minimal baseline for query federation. Our approach
is signature-based and compatible with a run-time selection of
sources. It is therefore particularly suitable for domains that
are characterized by low bandwidth and a dynamic network
topology. We have further described an example from military
evacuation planning to illustrate the usefulness of the approach.
In order to mitigate the heterogeneities between sources, as
well as to present the data in a vocabulary that is familiar
to the user, we found it expedient to use an ontology to
provide a unifying layer above the information sources. Any
incoming query is therefore rewritten according to the ontology
before being passed on to the sources. However, we have that
ontology-based data access is not coherent with our federation
strategy unless the ontology is formulated in a language that
is first-order rewritable such that reasoning can be decoupled
from data access. In realistic cases like ours, one quickly
transcends the expressive capabilities of familiar first-order
rewritable OWL fragments such as OWL2-QL. In our case we
overcame this limitation by resorting to a decidable fragment
of existential datalog.

ACKNOWLEDGEMENTS

The NATO systems participating in the experiments reported in
this paper was made available to us by the NATO C3 Agency.

REFERENCES

[1] P. Bartolomasi, T. Buckman, A. Campell, J. Grainger, J. Mahaffey,
R. Marchand, O. Kruidhof, C. Shawcross, and K. Veum, “NATO
Network Enabled Capability Feasibility Study, Version 2.0,” NATO C3
Agency, Tech. Rep., October 2005.

[2] W3C, “RDF Primer,” http://www.w3.org/TR/rdf-primer/, February
2004.

[3] ——, “OWL 2 Web Ontology Language Primer,”
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/, October
2009.

[4] ——, “SPARQL 1.1 Query Language,”
http://www.w3.org/TR/sparql11-query/, March 2013.

[5] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, A. Poggi,
M. Rodriguez-Muro, and R. Rosati, “Ontologies and Databases: The
DL-Lite Approach,” in Semantic Technologies for Informations Systems.
Springer, 2009.

[6] G. Gottlob, G. Orsi, and A. Pieris, “Ontological Queries: Rewriting
and Optimization (Extended Version),” Computing Research Repository,
vol. abs/1112.0343, 2011.

[7] B. Quilitz and U. Leser, “Querying distributed RDF data sources
with SPARQL,” in Proceedings of the 5th European Semantic Web
Conference (ESWC ’08), 2008.

[8] O. Görlitz and S. Staab, “SPLENDID: SPARQL Endpoint Federation
Exploiting VOID Descriptions,” in Proceedings of the 2nd International
Workshop on Consuming Linked Data (COLD 2011), 2011.

[9] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt,
“FedX: Optimization Techniques for Federated Query Processing on
Linked Data,” in Proceedings of the 10th International Semantic Web
Conference (ISWC 2011), 2011.

[10] J. Zemanek and S. Schenk, “Optimizing SPARQL Queries over Dis-
parate RDF Data Sources through Distributed Semi-Joins,” in Inter-
national Semantic Web Conference (Posters and Demos), ser. CEUR
Workshop Proceedings, vol. 401, 2008.

[11] G. Montoya, M.-E. Vidal, and M. Acosta, “A heuristic-based approach
for planning federated sparql queries.” in COLD, ser. CEUR Workshop
Proceedings, J. Sequeda, A. Harth, and O. Hartig, Eds., vol. 905.
CEUR-WS.org, 2012.

[12] M. Arenas, C. Gutierrez, and J. Pérez, “Foundations of RDF Databases,”
in Reasoning Web. Semantic Technologies for Information Systems.
Springer, 2009.

[13] B. J. Hansen, J. Halvorsen, and A. Stolpe, “Information integration
experiment at NATO CWIX 2012,” Norwegian Defence Research
Establishment (FFI), FFI/RAPPORT-2012/01543, 2012.

[14] P. Tsialiamanis, L. Sidirourgos, I. Fundulaki, V. Christophides, and
P. Boncz, “Heuristics-based query optimisation for sparql,” ser. Pro-
ceedings of EDBT ’12. ACM, 2012.

[15] C. Bizer and R. Cyganiak, “Publishing Relational Databases on the
Semantic Web,” http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/, Au-
gust 2009.

[16] M. KÃűnig, M. LeclÃĺre, M.-L. Mugnier, and M. Thomazo, “A sound
and complete backward chaining algorithm for existential rules,” in Web
Reasoning and Rule Systems, ser. Lecture Notes in Computer Science,
M. KrÃűtzsch and U. Straccia, Eds. Springer Berlin Heidelberg, 2012,
vol. 7497, pp. 122–138.

[17] M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and E. Ruckhaus,
“Anapsid: An adaptive query processing engine for sparql endpoints.” in
Proceedings of the 10th International Semantic Web Conference (ISWC
2011), 2011.

[18] C. Basca and A. Bernstein, “Avalanche: Putting the spirit of the web
back into semantic web querying,” in ISWC Posters&Demos, 2010.

[19] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U. Sattler, and
J. Umbrich, “Data summaries for on-demand queries over linked data,”
in Proceedings of the 19th international conference on World wide web,
ser. Proceedings WWW ’10. New York, NY, USA: ACM, 2010, pp.
411–420.

[20] Y. Li and J. Heflin, “Using reformulation trees to optimize queries over
distributed heterogeneous sources,” in Proceedings of 9th the Interna-
tional Semantic Web Conference (ISWC), ser. Proceedings ISWC’10.
Springer-Verlag, 2010.

http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/

	Introduction
	Characteristics of the domain
	Ontology-based data access
	Outline of approach
	Properties of the cropping
	Restricting the size of the cropping

	Case
	Experiences and Observations
	Related Work
	Conclusion
	References

