

# **Decision Making in Uncertainty**

#### Presentation to the:

9<sup>th</sup> International Conference on Sematic Technologies (STIDS 2014)

19 November 2014

Jeffrey G. Morrison, Ph.D

Office of Naval Research
Arlington, VA

jeffrey.g.morrison@navy.mil



# Research needed to address the information dilemma...





# How can we help make Decisions in Uncertainty?

- A notion...
  - It would be helpful to Characterize Uncertainty... not just model it.
  - Need to: Develop tools to manage what you Know (& Don't Know...)
    - Show how what you don't know is impacting your decision space What is most significant? What is worth worrying about?
    - Let the decision maker chose what uncertainties are most important / meaningful!
    - Use models to optimize given the decisions
    - Rinse & Repeat...
- Consider Meteorology as a model for Decision Making in Uncertainty:
  - Guidance (machine) vs. Forecasts (human)
- By way of example....
  - Piracy Prediction
  - Optimizing assets for countering smuggling



# Pirate Attack Risk Surface (PARS)





## **An Uncertainty Challenge...**

- Many DOD mission areas need to Maximize the Impact of Limited Operational Assets allocated within a dynamic and uncertain "targeting" environment.
  - Need decision support to optimize despite uncertainties.
  - We are using JIATF-S as a test-bed to develop a general approach.
- S&T community needs to Understand the role of Uncertainty in the "targeting" process
  - How might we develop strategies for Managing Uncertainty?
  - Can we Optimize given the uncertainties?
- Can we Develop Quantitative Decision Support to Manage Uncertainty? for targeteers, planners, and watchstanders to determine when & how to re-task operational assets?

Manage Uncertainty to Maximize ROI of Limited Assets and Tighten the "Targeting Loop"



#### **Counter Smuggling:**

#### Where do you allocate your assets for the best ROI?





Eye alt 2453,33 mi 7"31'51.66" N 81"22'25.86" W elev -2 ft



# Targeting in Uncertainty (TiU)





## Vision:

# "24/7 Targeting Board" Decision Support System

- Predict trafficking activity by understanding
   Uncertainty & Flow
- Optimize targeting solutions based on alternate objectives & user settings
- Evaluate manually entered solutions
- Update with new intel
- Compare solutions across time, space, and objectives



Persistent decision support for evaluating and recommending alternate targeting solutions within a limited asset, uncertain target domain.



\*Unit of Work = Case

# "Targeting" is a process...

Involves many decisions & many decision makers... **Analysts Targeteers** Gather Obtain Grow Reporting Develop Assess Non-Locate **Obvious** Assess Targeting Board Casing Relations Predict Criteria **Allocate** Stages\* **Focal Tasks** Case Con Pre-Case Anomalies **Optimize** Activity Patterns Grow a **Assets** Case Developing (n=4000/yr)J2. Case Slides Tgt Mtg Brief Prioritize & Active (n=1000/yr)Allocate Msg Interdiction Coord. Search & (n=100/yr)Interdiction



# A notional "Targeting" Use-Case: Decision Workflow...

- Start with an asset list, capabilities, status, schedule, and laydown
- Prioritize existing developing, pending, and active cases
- Consume new case intelligence (TATs, Alphas, INTs, etc.)
- Grow additional case information by relating historical reporting (Derog). Analysts review and edit this analysis to assess case criteria.
- Nominate new pending and active cases, then re-prioritize cases.
- Recommend alternate search and interdiction asset allocations
- Show the predicted impact as users modify prioritizations and/or allocations. Allow the user to select/create their intentions.
- Generate an Intensions "Message" and "Brief" for (some period of time).
- During the (period of time), get new case intelligence
  - Alpha reports from MPA flights (STOIs)
  - TAT or other human reporting (New Cases, Case Updates)
  - Case updates (SIGINT, ELINT, Sailaway, SPA)
- Consider re-allocation of assets....



# A notional "Dashboard" for Data Fusion & Decision Making in Uncertainty





# **TiU Decision Support Engine**



#### Command Decision Making Program:



## **COAST** (Courses of Action Simulation Tool)

**Description:** "Targeting in Uncertainty" Optimization models for dynamic asset allocation.

#### Overall FY14 Improvements

- Optimize across multiple active cases & Statistical "Flow" models
- Dynamic updates with new information
- Incorporate asset availability schedules
  - Dynamic coordination of both interdiction and surveillance assets
- Enable user-specified COAs in optimizations with Multiple objective functions
  - Optimize for any number of days
  - Account for case priorities
- Explaining allocation decisions

#### Surveillance Improvements

- New algorithm (Branch and Bound) implemented
  - Account for:
    - Cruise speed
    - On-station speed
    - Endurance
    - Rest requirements
- Ability to specify surveillance operations for night or daytime
  - Surveillance patrol box minimum size of 125 x 250 km² (based on JIATF-S input)
  - For each asset, ability to specify:
    - Departure time (or windowed)
    - Target type to avoid/search for
    - Case to avoid/search for
    - Operating area

#### Integration

- Transitioned to SIPRNet and NIPRNet clusters at NRL-MRY and super computer cluster at FN-MOC
- Full integration with JIATF-South Watchfloor databases

#### Interdiction Improvements

- Search space reduction
  - 2-fold reduction in solution time
- Dynamic coordination with surveillance





#### TiU enables targeteers to account for many types of uncertainty:

Departure & arrival locations, waypoints, speed, METOC impacts, overall confidence



## Must incorporate imperfect INTEL

E.g. p(target), obtained from conditionally mining historical cases



16

#### Evolution of all cases plus "flow"

Decisions should be made on the *combined information* from all cases



## Radar detection ranges evolve in space and time, & f(METOC)

Detection ranges as a function of location for a P3 flying at 1000' looking for a small boat



## Radar detection ranges evolve in space and time

Detection ranges for a P3 flying at 1000' looking for a small boat





## Notional Decision Making in Uncertainty Metrics

 Allow minimally trained watchstanders to make model-based, informed targeting and asset allocation decisions within 15 minutes (goal = 5 minutes) of receiving new intelligence or Alpha report.

Tools to <u>support</u> the watch floor's most important decision!

- Allow targeteers to rapidly (less than one hour) develop and evaluate multiple COAs across multiple days via metrics.
  - Allow users to compare quantitative metrics in terms of expected total number of interdictions, total value of interdicted assets, and probability of detection and interdiction of each evaluated case.
  - Incorporate individual case reliability into the models, represent in the decision support interface.
  - Provide context-based probability of detection based on METOC, Target, & Sensor information.
  - Incorporate flow in the models to account for the probability of unreported events
  - Augment/disambiguate case criteria uncertainty using conditional probabilities generated from historical records.



# A Generic Optimization Framework?





# Definition for Proactive Decision Support...

- The application of automated information management tools to:
  - Provide data in a structured manner (information)
  - Highlight Missing & Discrepant data
  - Manage changing, ambiguous and/or conflicting information
  - Develop a Smart Data Push / Pull
  - Provide alternate hypotheses given what is Known / Unknown
  - Enable human decision maker(s) to make time critical decisions faster and better than would otherwise be possible.

"Get (and keep) the decision maker in the ball park..."



# Why we need PDS & Uncertainty Management tools...





# C4I Community of Interest: Human Computer Interface for Decision Making (HCI-DM) Working Group

Rev. 9 MAY 2014

#### Army

Ray Schulze, CERDEC; Norbou Buchler, ARL HRED; Liz Bowman, ARL CISD; Kenneth Grippo, CERDEC

#### Navy

Jeffrey Morrison ONR (703) 696-4875; Mark Livingston, NRL

#### **Air Force**

Jason Moore, AFRL/RI Erik Blasch, AFRL/LB Paul Havig, AFRL/RH

#### **OSD**

Mr. David Jakubek

9 May 2014 24 FOUO: Pre-decisional

# Science & Technology

#### **HCI for DM**

### Motivation

- Challenge: Speed of Command requires timely delivery of useful information, to the right people at the right time, presented so as to support mission critical decisions.
  - Too much data not enough information: Impedes decision making cycles.
  - Must focus on understanding of / designing for missions and tasks.
  - Information Technology design must address dynamic operational demands, and variable cognitive workload.
- Perspective: Need to exploit emerging HCI technologies to create an intuitive means of interacting and collaborating that focus on missions, tasks and the efficient /effective sharing of information across commands.
  - Must support higher-level cognition (reasoning, sense-making) and deliberative collaboration.
  - Must facilitate interaction with autonomous systems as information providers/consumers as well as between human decision makers.
  - Must design for high quality / effective & timely sharing despite limited bandwidth & intermittent connectivity.
- Goal: Increase exploitation of information that enable collaboration, shared knowledge, and effective decision support in a complex, dynamic, net-centric environment.
  - Enable transparency between Commanders and the functional systems used for collaboration and decision making
  - Integrate multi-sensory, haptic, augmented reality, and virtual reality technologies.
  - Create a "Cognitive Services Layer" within our C4I Infrastructure that allow the autonomous management of information based on dynamic operational requirements.
  - Human centered computing: improve system usability, task performance, and dramatically reduce training requirements and field service support

Ensuring Mission-based, timely, Information for Command Decision Making



# Big Idea:

## **Decision Architecture**

- The long range answer: Creating a new layer for the interface between humans & computers, and then humans with each other via computers that *move High Value Information separately from general data*.
- We should create a Cognitive Layer for Information Technology
  - Start with the cognitive equivalent of a TCP/IP packet,
  - Expand with a set of supporting Cognitive services & protocols.



Decision Architecture must provide a Cognitive Layer for C4I - Manage the flow of data based on its expected value as <u>Information</u>



# Operational Challenges: HCl for DM (1 of 3)

| Challenge                                                                                        | Desired Capabilities                                                                                  | Research Opportunities (Priority)                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Algorithms for valuing & sharing information based on task needs (vice simply distributing data) | Imbue C4I systems with mission & task context awareness & dynamic information valuation algorithms    | <ul> <li>Develop Mission Context Engines linked to mission planning / management (1)</li> <li>Research into dynamic modelling information needs tied to mission context (1)</li> <li>Develop Information Triage Algorithms (1)</li> <li>Develop tools &amp; techniques for creating Low-Bandwidth Information Derivatives (1)</li> </ul>                            |
| Need operationally useful<br>Information Utilization /<br>Effectiveness Metrics                  | Able to dynamically evaluate mission utility, information quality & effectiveness of C4I technologies | <ul> <li>Develop performance surface models that represent<br/>spectrum of possible outcomes at any given time in<br/>mission for assessment (1)</li> <li>Develop techniques to assess human-machine<br/>system performance relative to possible outcomes<br/>(2)</li> </ul>                                                                                        |
| Uncertainty Management                                                                           | Tools and techniques that enable decision making with uncertain information                           | <ul> <li>Research decision making in Uncertainty &amp; strategies for managing uncertainty (1)</li> <li>Establish quantifiable &amp; operationally significant error bounds in information sources and evaluate impact on team performance. (1)</li> <li>Develop models for sensitivity analysis for missing &amp; uncertain data in decision making (2)</li> </ul> |
| C2 Display Utility<br>Assessment                                                                 | Tools and techniques to evaluate<br>display effectiveness during<br>operational use                   | <ul> <li>Research on information transaction measurement (2)</li> <li>Algorithms for dynamically computing display utility / display effectiveness (1)</li> <li>Development of DoD standards &amp; employment protocols for User Defined Operational Picture (UDOP) widgets &amp; services (2)</li> </ul>                                                           |



# **Operational Challenges for** HCI for DM (2 of 3)

| Challenge                                                                   | Desired Capabilities                                                                                                                   | Research Opportunities (Priority)                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proactive Planning Decision<br>Support                                      | Tools the capture, encode & reason about mission planning. Products must be human interpretable, machine manipulatable objects.        | <ul> <li>Research on tools and techniques for mission driven Information Brokering (1)</li> <li>Research into appropriate units of analysis for mission planning (3)</li> <li>Development of tracking algorithms to "chart the changes" in mission plan elements (2)</li> </ul>                                                                                                |
| Information Provenance Pedigree                                             | Tools and techniques to maintain<br>awareness of underlying information<br>sources as data is fused & propagated<br>across commands    | <ul> <li>Preserve &amp; expose Pedigree / Provenance of mission critical information (1)</li> <li>Technique for showing dependencies in hybrid/fused data (2)</li> <li>Visualization for charting changes in fused data elements (2)</li> <li>Algorithms to quantify information value to a decision maker given multiple factors, e.g. Missions, Tasks, Skills (1)</li> </ul> |
| Low-Cost C2 Utility Simulation<br>Testing Environments                      | Develop & validate C2 processes<br>through virtual constructive test &<br>development                                                  | <ul> <li>Develop C2 Test Task, vignettes that are common to DoD missions (2)</li> <li>Develop agent-based simulations for common C2 missions (2)</li> <li>Development of virtual agents for small unit operations (1)</li> <li>Extend Human Interface Test Beds to evaluate the impact of information derivatives on team performance (1)</li> </ul>                           |
| Machine Facilitated Collaboration for managing Autonomous & Complex Systems | Design standardized protocols for effective & efficient information transaction for supervisory control of multiple autonomous systems | <ul> <li>Research techniques for transacting key mission events &amp; failures as they relate to a dynamic mission context.</li> <li>(1)</li> <li>Develop machine encodable, semantic ontology, for task / mission context models (1)</li> <li>Research the development of trust as a information</li> </ul>                                                                   |

exchange process (2)



# Operational Challenges for HCI for DM (3 of 3)

| Challenge                                                                | Desired Capabilities                                                                                                                         | Research Opportunities (Priority)                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model Command / Combat Decision Making for Machine Executable Components | Reusable cognitive services that emulate low-level decision-making and enable doctrinally-based, higher-level, decision support              | <ul> <li>Develop Cognitive Services algorithms for SOA (1)</li> <li>Research Behavioral Trajectory Modeling<br/>Techniques (1)</li> <li>Develop Behavioral Anomaly Detection Algorithms (2)</li> <li>Develop Proactive Decision Support Tools for missions (1)</li> </ul>                                |
| HCI Test & Evaluation<br>Simulations                                     | Test beds and tools for evaluation of alternative HCl design concepts prior to operational testing                                           | Develop agent –based simulations of military C2 units (e.g. components of Regimental command center, Naval Strike Group)                                                                                                                                                                                 |
| Information Management for limited connectivity                          | Strategies for smart-push and efficient, localized storage of high value, mission critical information                                       | <ul> <li>Develop operational data cache for information<br/>staging</li> <li>Develop "Best Available Data" management<br/>schemes for bandwidth challenged environments</li> </ul>                                                                                                                       |
| Information Derivatives - Text                                           | Develop semantic meta-tagging capabilities for structure & unstructured text                                                                 | <ul> <li>Develop tools for computing derivative information / "gisting" (2)</li> <li>Trend analysis tools for text context (2)</li> <li>Develop data analytic tools for hypothesis generation / texting (2)</li> </ul>                                                                                   |
| Behavioral Anomaly Detection                                             | Personal (wearable) devices for sensing biophysical, biomechanical states with algorithms for detecting physiological & behavioral anomalies | <ul> <li>Research to identify mission-specific tasks and normal bounds of physical effort (1)</li> <li>Develop anomaly alert mechanisms to signal unexpected behaviors across command echelons(1)</li> <li>Research for display of individual / team mission readiness &amp; capabilities (1)</li> </ul> |



#### **Acknowledgements:**

Dr. Jim Hansen, NRL MRY

Mr. David Kellmeyer, SSC-Pacific

Dr. Krishna Pattipati, UConn



# **UNCERTAINTIES???**



#### Pirate Attack Risk Surface (PARS)

#### Jim Hansen (NRL Monterey)

#### **Project Objectives:**

Dynamically couple METOC and INTEL guidance to estimate and communicate the expected risk of pirates operating off the Horn of Africa (HOA) and in the Gulf of Aden (GOA) as a function of location and forecast lead.



Risk of pirate attack requires pirate probabilities, shipping probabilities, and environmental suitability probabilities.

#### **Technical Approach:**

- Combine INTEL, uncertainty, environmental forecasts, and pirate behavior information to predict the distribution of possible pirate locations.
- Construct probabilistic forecasts of vulnerable commercial ships.
- Estimate the probability of attack conditioned on the environmental conditions.
- Attack probability is the product of the pirate probability, shipping probability, and environmental suitability probability.

#### **Accomplishments/Impact/Transitions:**

- Successful transition and operationalization at the Fleet Numerical Oceanography and Meteorology Center (FNMOC, pirate probabilities) and the Naval Oceanographic Office (NAVO, shipping probabilities and environmental suitability).
- Briefed daily at NAVCENT and JOMOC (Northwood).
- Computerworld Honors Laureate (visionary applications of information technology moving businesses forward and benefiting society.)
- Technical foundation for *Targeting in Uncertainty* applications in illicit trafficking and anti-submarine warfare.

31